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Circuit Equivalence Checking — Isomorphic Miter
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(a) gates Gq,...,Gg (b) miter circuit (c) CNF with clauses Cy,...,Cyy

XOR of the output of two (isomorphic) circuits is constant 0
Miter circuit assumes that the outputs can be different (XOR is 1)

Thus Tseitin Encoding into CNF of the miter is unsatisfiable



Circuit Equivalence Checking — Hyper Binary Resolution [CPAIOR’13]
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(a) gates Gy,...,Gg (b) miter circuit (c) CNF with clauses Cy,...,Cyy

Two hyper binary resolution steps yield the equivalence a; =ap
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Circuit Equivalence Checking — Linear Resolution Chains — RUP
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(a) gates Gy,...,Gg (b) miter circuit (c) CNF with clauses Cy,...,Cyy

The HBR steps correspond to two linear chains of resolution (RES) steps:
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Circuit Equivalence Checking — Substitution
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Next we have to substitute (w.l.0.g.) a, by a; in the formula:
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Structural Hashing through Hyper-Binary Resolution Summary

The following two hyper binary resolution steps yield the equivalence a; = a,

(a175)2a  (@or)as  (d@as)ae HBR, (ao7s)27  (arr)n  (@1s)23 HBR,

(a1d@z)2s8 (axay )29

They correspond to the following two linear chains of resolution (RES) steps:

(a175)24  (@2r)25 (a275)27  (@17r)22
(a1dss3) _RES (@25)26 RES (a2a15) _RES (@)
(a1a2)28 (axd1)29

23 RES

Such linear resolution chains correspond to reverse-unit propagation (RUP)

Next we have to substitute (w.l.0.g.) a, by a; in the formula:

(mycaz)1n  (apay)
(mycay)s3y

(mycaz)1p  (a1dn)sg

29
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Structural Hashing vs. Congruence Closure

® hash-consing (LISP)
B common-sub-expression elimination (compilers)
® unique-table in BDD and AIG libraries (strash in ABC)
= often wrongly assumed to require an acyclic circuit representation (DAG)
® gstructural rule in Stalmarck’s procedure
= works on “sea of triples” (gate equations)
® congruence axiom (core rule in SMT solvers)

x:f(avb) y:f(c,d) a=c b=d
x=y

= obviously does not require an acyclic (circuit) representation

= common implementation
= hash right-hand-side of equations to left-hand-side variables
= replace matching larger left-hand-size variable with smaller one

® congruence closure requires order on variables but equations can be cyclic



However ...

® structural hashing finds identical gates
= applied recursively on the circuit solves isomorphic miters
= but isomorphic parts emerge during inprocessing
= and many instances are only given in CNF
= hyper binary resolution works for AND/OR gates (and negations)

= one strategy to solve isomorphic AND/OR miters:
simple-probing tries to simulate structural hashing

= XOR/ITE gates need additional intermediate clauses
= which are still RUP clauses though
= simple-probing alone does not work
= hyper binary resolution alone neither
= in earlier [CPAIOR13] work we proposed to use ternary resolution
can in principle solve isomorphic miters with binary XOR/ITE gates

®m CDCL does not find the right clauses



buddy@company.com, Jan 16, 2023, 5:14 PM
to me, colleague(@company.com
Hi Armin,

My colleague (in CC) has encountered an unsatisfiable benchmark
formula from the 2014 SAT competition that is solved immediately by
lingeling (including a verified proof) but takes much longer by other
solvers like CaDiCal, kissat, or even Gimsatul (the formula is
attached to this email if you are interested).

It turns out that lingeling solves the formula during failed-literal
probing. This 1s interesting because CaDiCal and kissat perform
failed-literal probing too, but they must be doing 1t differently.
Even if I explicitly tell CabiCalL to perform one or more rounds of
preprocessing (with the -P command-line option), it still takes long
to solve.

We do not want you to spend any time investigating this, but we wanted
to hear whether you can think of an obvious explanation for why this
1s happening? Is it maybe because lingeling i1s using a different
heuristic for choosing the literals to probe on? Or because of other
heuristics related to probing? Or is it maybe something completely
different?

Buddy



to buddyl@company.com, colleague@company.com, Jan 16, 2023, 5:20 PM

Very cool, thanks. I will have a look! Maybe it is ’'simple probing’,
where we had started experiments with Norbert Manthey once but it never
gave a paper. This simulates structural hashing on AIGs on the CNF level
(fast — because other methods do that too but more and slower).

Armin

to buddyW@company.com, colleague@company.com, Jan 16, 2023, 5:24 PM

Yep, so 1t is probably actually a benchmark I submitted in that year ;-)
Those are miters of identical circuits, which can be trivially solved 1f
you have the AIGs: just read the input. For SAT it 1s much harder even
though we know there is a simple resolution proof. See our CPAIOR’13
paper (Knuth called this issue a dead body in the cellar). I have not
found a way to make this fast in all cases and worse it can not be
preempted as variable elimination destroys the nice structure for this
simple probing to work. The SAT sweeper in Kissat can do it with Kitten
as sub-solver, but you have to give more time.

With ’—-—-no-prbsimple’ you can check that it is indeed ’'simple probing’ to
make Lingeling fast on this one.

Armin



to buddyl@company.com, colleague@company.com, Jan 16, 2023, 5:30 PM
BTW, I guess you used this one
/data/cnf/sc2022/main/6s184.cnf.xz

which is a benchmark I regularly use for testing now
(Kissat solves it in 800 seconds or so).

It is good that the organizer’s procedure seems to pick up those trivial
benchmarks ;-)

Armin

buddy(dcompany.com, Jan 16, 2023, 5:30 PM
to me, colleague(@company.com

Haha, so I guess lingeling was the only solver solving that formula
efficiently back then. :-D

Thanks a lot for responding so quickly! I just started a run of lingeling
with '"—-—no-prbsimple’, and after more than two minutes it 1s still
running. Nice!

Thanks a lot,
Buddy
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simple-probing (CNF F)
literals L = all literals in F
candidates A =L
while A # 0
pick and remove [ € A
for all “base” clauses C € F with |C| >2and [ eC
for all literals k € C
counts y:L — N initialized to y=0
for all binary clauses (o Vk) € F
’y(0)++
for all » with y(7)+1=|C| and |r| # |l| and (FVI) ¢ F
add (rvIl)to F
if (rvi)eF
substitute = r in all clauses D € F with I or [ in D
reschedule literals in resulting clauses by adding them to A
continue with outer while loop at Line 3



Lingeling on AND Encoded Isomorphic HWMCC’12 Miters
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Lingeling on AND Encoded Isomorphic HWMCC’12 Miters vs. Kissat

100% = 341 instances
@)
<t —
qp)
o X
m pu—
op)
@)
N —
op)
(@)
H —
op)
O 341 kissat—ands—iso—default
S A 340 lingeling—1.0.0—ands—iso—prbsimplertc
™ 337 kissat—ands—-iso—no—congruence
x 332 lingeling—1.0.0—ands-iso—default
327 lingeling—1.0.0—ands—-iso—no—prbsimple

I I I I
0 1000 2000 3000 4000 5000



©O O© 00 N o 0o & WO N =

_ . X
~ W0 D =

basic-and-gate-extraction (CNF F)
resulting AND gates A =0
literals L = all literals in F
for all clauses C € F with |C| > 2
marks u: L — B initialized to u= L
for all literals r with 7 € C
p(r)=T
for all literals [ € C
n=>0
for all binary clauses (IVr) € F
if u(r) then n++
ifn=|C|—1
let IVFV...V7,) =C
add AND gate (I=rjA---Ary) tOA
return A

More sophisticated and faster version in the implementation
was in the appendix and will go into extended version of paper
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basic-xor-gate-extraction (CNF F)

resulting XOR gates X =0
let B:N x N — {0,1} with B(i,s) = (s/2") mod?2
let m: N — {0,1} with wt(s) = |{i | B(i,s) = 1}|mod?2
for all clauses C = (V... VI,—_1) € F with |C| > 2
fors=2to 2" —1 withw(s) =0
D= {l; | B(i,s) =0} U{l;| B(i,s) = 1}
if D ¢ F continue with outer loop at Line 4
fori=0tom—1
let (;VkiV...Vk,_1)=C and [ =
add XORgate (I =k ®---Dk,,,—1) 10X
return X

More sophisticated and faster version in the implementation too

described in the paper



basic-ite-gate-extraction (CNF F)
1 resulting ITE gates I =0
for all ternary clauses C= ([ VL Vi3) € F
fori=1...3
let (cVIVt) =C with c=1;
if (cVIVi)¢F continue with next i at Line 3
for all ternary clauses (cVVIVe) € F
if (cvive)eF
add ITEgate (I =c?t:e)to 1

© 0O N o O A W N

return /

This basic version is still slow!
looks qubic, but is quadratic

Faster version with conditional equivalences next two slides ...



Conditional Equivalences

(l=c?t:e) = (c=>Il=t)N(C—1l=¢)

® split on condition variables ¢
® find equivalences assuming c
® find equivalences assuming ¢

= merge them to find matching left-hand-side /



find-conditional-equivalences (CNF F, literal c)
1 resulting conditional equivalences E =0
for all ternary clauses C = (¢VIVt) € F
if (CVIVE)eF
add/=rt0 E
return E

o B~ W N

merge-conditional-equivalences (literal ¢, equivalences E™, equivalences E ™)

6 resulting ITE gates 7 =0

7  forall equivalences [ =¢in E™

8 for all equivalences [ =¢ in E™

9 add ITEgate (I=c?t:e)t0 1
10 return /

fast-ite-gate-extraction (CNF F)
11 resulting ITE gates I =0
12 for all variables vin F

13 E™T = find-conditional-equivalences (F, v)
14 E~ = find-conditional-equivalences (F, V)
15 add merge-conditional-equivalences (v, ET, E~) to I

16 return /
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merge-literals (CNF F, queue Q, representatives p, literals /1, 1»)
ri=p(l1), n=p()
if ry =7, then F = | and return
select r € {ry,r} with |r| = min(|r{],|r])
update p(l1) = p(h) =rand p(l}) =p(h) =7
if » # r; then enqueue [y to O
if » # r, then enqueue [, to O

clausal-congruence-closure (CNF F)
G = extract-gates (F)
literals L = all literals in F
representatives p: L — L initialized to p(/) ={
Q = empty literal queue
for all (I} =rhsy),(lp = rhsy) € G with rhsy = rhs)
merge-literals (F, Q, p, 1, [»)
while F £ 1 and Q not empty dequeue [ from Q
for all gates (k = rhs) € G where [ or [ occurs in rhs
use p to rewrite (k = rhs) to (k' = rhs’)
remove gate (k = rhs) from G
if G contains (k" = rhs”) with rhs’ = rhs’” then merge-literals (F, Q, p, K/, k")
else add gate (K =rhs’) to G
remove clauses C from F with C #p(C) A p(C) € F
replace F with p(F)



Kissat on AND encoded Isomorphic HWMCC’12 Miters
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for “sweep” see our FMCAD’24 paper on “Clausal Equivalence Sweeping” with Kitten



Example of Optimized (Non-lIsormophic) Miter
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(c) CNF with clauses Cy,...,Cyg

To generate the optimized miters we used the ABC synthesis command dc2 for optimization



Kissat on AND encoded Optimized HWMCC’'12 Miters

340

330

320

310

300

100% = 341 instances

o0 335 kissat—ands—opt—default
A 335 kissat—ands—opt—no—congruence
329 kissat—ands—opt—no—congruence—no-sweep

1000

2000

I I I
3000 4000 5000




XITS Encoding — Extracting XOR/ITE Gates in AlG Tseitin Encoding

(X4x1), (X4x2), (x4X1 X2),

(XsX1), (X5x3), (X5X1X3),

(X6X4), (X6Xs), (X6 XaX5),

o (X7x1), (¥7X2), (x7%1 x2),
(XgX1), (X3X3), (xgx1x3),

(X9X7), (XoXg), (x9x7X3),

(X10%6), (¥10X9), (*10X6X9),

(X11%X6), (¥11X9), (X11X6X9),

(x12x10%11), (X12)-

The ANDS encoding of the AlG.

(X4f1 X3), ()_C4X1 x2)7
(x4 X1X3), (Xax1 X2),

t : : (Xs5x1%3), (X5x1X2),
(X5f1 X3), (szl X2),
Miter of two ITE gates in AIGER format. (x6Xsx4), (x6x5X4), (X6)-

The XITS encoding of the AlG.



Kissat on ANDs and XITS encoded Isomorphic HWMCC'12 Miters
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Kissat on ANDs and XITS encoded Optimized HWMCC’12 Miters

340

330

320

310

300

100% = 341 instances

o 336
A 336
336
x 335
335
v 334
330
329

kissat—xits—opt—default
kissat—xits—opt—no—congruenceites—no—congruencexors
kissat—xits—opt—no—congruenceites
kissat—ands—opt—default
kissat—ands—opt—no—congruence
kissat—xits—opt—no—congruence
kissat—xits—opt—no—congruence—no—-sweep
kissat—ands—opt—no—congruence—no—-sweep

1000

2000

I I I
3000 4000 5000




All Configurations of Kissat on all HWMCC'12 Miters
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Best Solver Configuration on Isomorphic HWMCC’12 Miters
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Best Solver Configuration on Optimized HWMCC’12 Miters
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State-of-the-Art Circuit Approach on 5 Hard Miters from [IWLS'22] [pac21]
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[IWLS’22] He-Teng Zhang, Jie-Hong R. Jiang, Alan Mishchenko, and Luca Amaru.
“Improved large-scale SAT sweeping”

[DAC’21] Hee-Teng Zhang, Jie-Hong R. Jiang, Luca G. Amaru, Alan Mishchenko, and Robert K. Brayton.
“Deep integration of circuit simulator and SAT solver”



State-of-the-Art Circuit Approach on 5 Hard Miters from [IWLS'22]

n01 n04 n06 testO1 test02
abc-240306-fraig 5.96 5.38 4.86 2.89 5.75
Kissat-xits-check 9545 162.38 282.61 54.28 9.06
kissat-ands-check 81.57 209.54  233.75 67.95 431.21
Kissat-xits-default 305.60 160.01 542.18  352.15 1.79
kissat-xits-proof 287.21 179.72  593.54  345.60 2.38
Kissat-xits-no-sweep 199.17 807.07 644.22 669.11 1.79
kissat-xits-no-congruenceites 238.32 157.06 631.46  363.93 2032.41
Kissat-xits-no-congruence 222.25 218.73 684.94 40448 2270.00
kissat-xits-no-congruence-no-sweep  221.25 678.17 720.29 1073.75 2620.65
kissat-ands-default 231.87 201.45 664.81 479.28 4585.76
blocked-clause-decomposition-ands 840.19 1058.28 2345.20 2368.54 4846.14
lingeling-1.0.0-ands-default 563.08 3192.09 1997.28 2788.51 3788.10
lingeling-1.0.0-xits-prbsimplertc 607.82 1039.04 1540.55 2459.75 —
blocked-clause-decomposition-xits 622.46 822.68 1841.48 2628.96 —
lingeling-1.0.0-ands-no-prbsimple 733.61 1928.03 2144.69 2568.83 —
lingeling-1.0.0-ands-prbsimplertc 700.58 3085.86 2092.79 2875.45 —
sbva-cadical-ands 244.94 1800.21 1135.28 — —
cadical-1.9.5-ands 236.14 2270.17  701.13 — —
minisat-2.2.0-xits 895.77 4088.40 3525.61 — —
cadical-1.9.5-xits 227.21 — 801.69 — —
sbva-cadical-xits 205.70 — 853.77 — —
minisat-2.2.0-ands 1229.07 —  3660.71 — —



Kissat and SBVA-CaDiCal on 400 SAT Competition 2022 Benchmarks
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Conclusion and Future Work

® First approach which instantly solves large isomorphic CNF-encoded miters!

= Complements semantic SAT-sweeping with our embedded SAT solver Kitten

= which by itself is too slow but
= see our upcoming FMCAD’24 paper on “Clausal Equivalence Sweeping”

m Beneficial for other benchmarks too

= optimized miters (industrial use-case)
= paper has comparison with hard miters from state-of-the-art circuit approach
= SAT competition benchmarks have many congruences too

®  Ongoing work is to extend paper with description of all optimizations

® Port clausal congruence closure to CaDiCalL

® How to cheaply achieve (even) more semantic rewriting?

= How to produce linear proofs (LRAT)?



