Blocked Clause Elimination for Projected Model Counting

Jean-Marie Lagniez¹ Pierre Marquis¹

Armin Biere² lagniez@cril.fr marquis@cril.fr biere@cs.uni-freiburg.de

¹ Univ. Artois, CNRS, CRIL, France ² University Freiburg, Germany

SAT 2024 August 20, Pune, India

https://cca.informatik.uni-freiburg.de/biere/talks/Biere-SAT24-blocked-talk.pdf

Motivations

- <u>Projected model counting (PMC)</u> is a significant problem in many areas \Rightarrow AI, formal verification, database. ...
- \blacksquare generalization of the standard model counting problem $\#\mathrm{SAT}$
- PMC is at least as complex as #SAT (#P-hard)
- In practice PMC turns out to be more challenging than #SAT
 ⇒ additional constraints imposed on the branching heuristic
- \blacksquare Idea: use preprocessing techniques to enhance resolution of $\#\mathrm{SAT}$ / PMC

Blocked-clause elimination appears as a valuable candidate, but ...

The SAT problem

 $\begin{array}{l} 1:x_1 \lor x_2 \\ 2:\neg x_2 \lor x_3 \\ 3:\neg x_1 \lor \neg x_2 \lor \neg y_1 \\ 4:x_1 \lor \neg x_3 \lor y_1 \\ 5:x_2 \lor \neg x_3 \lor y_2 \\ 6:x_1 \lor \neg x_3 \lor \neg y_2 \\ 7:y_3 \lor x_2 \\ 8:\neg y_3 \lor \neg x_2 \lor \neg x_3 \\ 9:\neg y_3 \lor x_1 \\ 10:\neg y_3 \lor \neg y_2 \lor x_3 \\ 11:y_3 \lor y_2 \lor x_2 \end{array}$

- Propositional variables: a, b, c
- \blacksquare Literals: a, $\neg a$
- Clauses: $\alpha_i = a \lor \neg b$ (also viewed as sets of literals)
- CNF formula: Σ
 (also viewed as an ordered set of clauses)
- SAT: can we find an interpretation ω of the variables that satisfies the input formula?

 $\Rightarrow \omega$ is called a model of Σ

- $S_{\ell}(\Sigma) = \{ \alpha_i \in \Sigma \mid \alpha_i \cap \ell \neq \emptyset \}$
- Let $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ then $\Sigma[i]$ denotes the clause α_i
- $\blacksquare \oplus$ denotes resolution
 - $\alpha = \alpha_1 \oplus \alpha_2$ is the resolvent of α_1 and α_2

Model Counting

- Propositional model counting aims to determine the number of models $\|\Sigma\|$ of Σ over the set $\operatorname{Var}(\Sigma)$ of variables occurring in Σ
- For the running example, $Var(\Sigma) = \{x_1, x_2, x_3, y_1, y_2, y_3\}, \|\Sigma\| = 9$ and the models of Σ are:

$$\begin{cases} \neg x_1, x_2, x_3, y_1, \neg y_2, \neg y_3 \\ \{x_1, \neg x_2, x_3, y_1, y_2, y_3 \} \\ \{x_1, \neg x_2, x_3, \neg y_1, y_2, y_3 \} \\ \{x_1, \neg x_2, \neg x_3, \neg y_1, y_2, y_3 \} \\ \{x_1, \neg x_2, \neg x_3, y_1, \neg y_2, y_3 \} \\ \{x_1, \neg x_2, \neg x_3, \gamma y_1, \gamma y_2, y_3 \} \\ \{x_1, x_2, x_3, \neg y_1, \neg y_2, y_3 \} \\ \{x_1, x_2, x_3, \neg y_1, \gamma y_2, \neg y_3 \} \\ \{x_1, x_2, x_3, \neg y_1, \neg y_2, \neg y_3 \} \end{cases}$$

- Given (X, Y) a partition of $Var(\Sigma)$, PMC consists in computing $||\exists Y.\Sigma||$, the number of interpretations over X, which coincide on X with a model of Σ
- For the running example, $Var(\exists y_1y_2y_3.\Sigma) = \{x_1, x_2, x_3\}, \|\exists y_1y_2y_3.\Sigma\| = 4$ and the models of $\exists y_1y_2y_3.\Sigma$ are:

$$\begin{cases} \neg x_1, x_2, x_3 \\ \{x_1, \neg x_2, x_3 \} \\ \{x_1, \neg x_2, \neg x_3 \} \\ \{x_1, x_2, x_3 \} \end{cases}$$

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \vee x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$		$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \vee x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$		$11:y_3 \lor y_2 \lor x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \vee x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9: \neg y_3 \lor x_1$		$11:y_3 \vee y_2 \vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \lor x_3$	$3:\neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \vee x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9: \neg y_3 \lor x_1$		$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \vee x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \vee x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9: \neg y_3 \lor x_1$		$11:y_3 \vee y_2 \vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \lor x_3$	$3:\neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \vee x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$		$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \vee x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \vee x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9: \neg y_3 \lor x_1$		$11:y_3\vee y_2\vee x_2$	

- Blocked Clause Elimination (BCE) removes specific clauses, the so-called blocked clauses, from CNF formulas
- A literal ℓ within a clause α is a blocking literal if ℓ blocks α w.r.t. Σ
 - ► This occurs when, $\forall \alpha' \in \Sigma$ s.t. $\overline{\ell} \in \alpha'$, the resulting resolvent $\alpha \oplus \alpha'$ of α and α' on ℓ is a tautology
- A clause is considered blocked if it contains a literal that blocks it
- Applying BCE to Σ leads to remove every clause containing a blocking literal and by repeating the process iteratively until no blocked literal exists

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$	$3:\neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7: y_3 \lor x_2$	$8:\neg y_3 \vee \neg x_2 \vee \neg x_3$
$9: \neg y_3 \lor x_1$		$11:y_3\vee y_2\vee x_2$	

BCE for PMC

- BCE guarantees the preservation of satisfiability but not necessarily the preservation of the number of models
 - For the previous example, BCE(Σ) = Ø: this corresponds to 2⁶ = 64 models over Var(Σ), which differs from ||Σ|| = 9
- The picture changes when addressing the projected model counting problem:

Proposition

If a non-tautological clause $\alpha_i \in \Sigma$ is blocked by a literal $\ell \in \alpha_i$ with $\ell \in \{x, \neg x\}$, then $\exists x.\Sigma$ is logically equivalent to $\exists x.\Sigma'$, where $\Sigma' = \Sigma \setminus \{\alpha_i\}$.

• When focusing on subformulas containing only projected variables, the requirement is only to ensure satisfiability

BlockedClauseManager:initialization

- To efficiently identify clauses eligible for removal through BCE, we introduce a BlockedClauseManager
- This manager identifies clauses eligible for elimination because of a blocked literal, by using a mechanism akin to the one considered for watched literals

backtrack free handling!

- A clause α is not blocked on a literal $\overline{\ell} \in \alpha$ if there exists another clause α' such that $\overline{\ell} \in \alpha'$ and $\alpha \oplus \alpha'$ is not a tautology
 - ► $\forall \ell \in \alpha$ such that $\operatorname{Var}(\ell) \subseteq X$, either ℓ is assigned or there must exist a clause α' where $\bar{\ell} \in \alpha'$, and $\alpha \oplus \alpha' \not\cong \top$

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

• When evaluating α_3 , literal $\neg y_1$ cannot be associated with a clause from Σ without resulting in a tautology.

• α_3 can be safely removed from Σ.

BlockedClauseManager:initialization

- To efficiently identify clauses eligible for removal through BCE, we introduce a BlockedClauseManager
- This manager identifies clauses eligible for elimination because of a blocked literal, by using a mechanism akin to the one considered for watched literals

backtrack free handling!

- A clause α is not blocked on a literal $\overline{\ell} \in \alpha$ if there exists another clause α' such that $\overline{\ell} \in \alpha'$ and $\alpha \oplus \alpha'$ is not a tautology
 - ► $\forall \ell \in \alpha$ such that $\operatorname{Var}(\ell) \subseteq X$, either ℓ is assigned or there must exist a clause α' where $\bar{\ell} \in \alpha'$, and $\alpha \oplus \alpha' \not\cong \top$

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$	$3: \neg x_1 \vee \neg x_2 \vee \neg y_1$	$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

• When evaluating α_3 , literal $\neg y_1$ cannot be associated with a clause from Σ without resulting in a tautology.

• α_3 can be safely removed from Σ.

BlockedClauseManager:watches

• The watches structure associates each clause $\alpha \in \Sigma$ with a set of triples watches $[\alpha]$ that are being watched by α

► each triple (ℓ, α, C) is s.t. $\alpha \in \Sigma, \ell \in \alpha$ and $C = \{\alpha' \in \Sigma | \alpha \oplus \alpha' \neq \top\}$

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$		$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3 \lor y_2 \lor x_2$	

```
watches[6] = {(y<sub>2</sub>, 5, {6}), (y<sub>2</sub>, 11, {6})}
watches[5] = {(\negy<sub>2</sub>, 6, {5, 11})}
watches[9] = {(y<sub>3</sub>, 7, {9, 10}), (y<sub>3</sub>, 11, {9})}
watches[7] = {(\negy<sub>3</sub>, 9, {7, 11}), (\negy<sub>3</sub>, 10, {7})}
watches[3] = Ø
watches[4] = Ø
watches[8] = Ø
watches[10] = Ø
watches[11] = Ø
```

BlockedClauseManager:propagate

• When conditioning a formula by a literal ℓ , without rendering it unsatisfiable, there is no need to consider clauses shortened by this conditioning operation

► $\alpha \setminus \{\overline{\ell}\} \in \Sigma_{|\ell}$ cannot be blocked by any literal $\ell' \in \alpha \setminus \{\ell\}$ in $\Sigma_{|\ell}$

• It is enough to trigger the clauses that are removed either because they are satisfied or removed by BCE

$1: x_1 \lor x_2$	$2:\neg x_2 \lor x_3$		$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$	$6: x_1 \vee \neg x_3 \vee \neg y_2$	$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
$9:\neg y_3 \lor x_1$	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3 \lor y_2 \lor x_2$	

• If x_1 is set to 1, then clauses 1, 6, 9 become satisfied \Rightarrow {11} should be removed

 $\begin{array}{l} & \dots \\ \text{watches}[5] = \{(\neg y_2, 10, \{5\})\} \\ \text{watches}[9] = \{(y_3, 11, \{9\})\} \\ \text{watches}[6] = \{((y_2, 11, \{6\})\} \\ \text{watches}[10] = \{(y_2, 5, \{6, 10\}), (y_3, 7, \{9, 10\})\} \end{array}$

BlockedClauseManager:propagate

• When conditioning a formula by a literal ℓ , without rendering it unsatisfiable, there is no need to consider clauses shortened by this conditioning operation

► $\alpha \setminus \{\overline{\ell}\} \in \Sigma_{|\ell}$ cannot be blocked by any literal $\ell' \in \alpha \setminus \{\ell\}$ in $\Sigma_{|\ell}$

• It is enough to trigger the clauses that are removed either because they are satisfied or removed by BCE

	$2:\neg x_2 \lor x_3$		$4: x_1 \vee \neg x_3 \vee y_1$
$5: x_2 \vee \neg x_3 \vee y_2$		$7:y_3 \lor x_2$	$8: \neg y_3 \vee \neg x_2 \vee \neg x_3$
	$10: \neg y_3 \vee \neg y_2 \vee x_3$	$11:y_3\vee y_2\vee x_2$	

• If x_1 is set to 1, then clauses 1, 6, 9 become satisfied \Rightarrow {11} should be removed

```
\begin{array}{l} & \dots \\ \text{watches}[5] = \{(\neg y_2, 10, \{5\})\} \\ \text{watches}[9] = \{(y_3, 11, \{9\})\} \\ \text{watches}[6] = \{((y_2, 11, \{6\})\} \\ \text{watches}[10] = \{(y_2, 5, \{6, 10\}), (y_3, 7, \{9, 10\})\} \end{array}
```

Experimental setup

- We used 500 CNF instances from the 2021, 2022 and 2023 Model Counting competitions
 - 200 from the 2021 competition, 200 from the 2022, and 100 from the 2023 competition
- A time-out of 3600 seconds and a memory limit of 32 GiB have been considered
- Three different versions of the projected model counter d4 have been used for the evaluation:
 - d4: this is the standard version of d4
 - ▶ d4+BCE_p: this version of d4 incorporates BCE performed once during a preprocessing phase
 - ▶ d4+BCE_i: in this version of d4, BCE is performed dynamically throughout the search achieved by the model counter
- For all the versions under consideration, a preprocessing step of 60 seconds was conducted. This preprocessing involves running BiPe, followed by occurrence elimination and vivification preprocessings for 10 iterations.

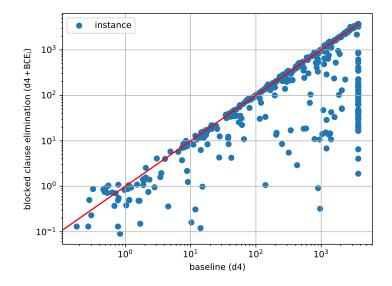
Numbers of instances solved

■ The following table gives:

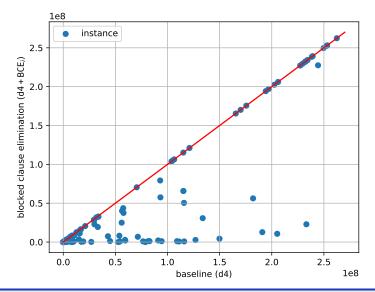
- the number of instances solved
- ▶ the number of memory out (MO) encountered

	2021 (200)	2022~(200)	2023 (100)	All (500)
d4	139 (56 MO)	149 (24 MO)	73 (9 MO)	361 (89 MO)
$d4 + BCE_p$	139 (56 MO)	$149 \ (25 \ {\rm MO})$	73 (9 MO)	361 (90 MO)
$d4 + BCE_i$	172 (23 MO)	163 (8 MO)	$78 \; (4 \; \mathrm{MO})$	413 (35 MO)

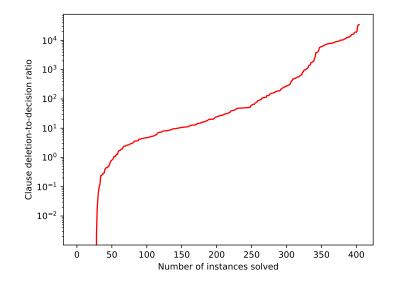
Run time comparison between d4 and $d4+BCE_i$



Number of decisions made by d4 vs. $d4+BCE_i$



Clause deletion / Number of decisions



Conclusion

- Blocked clause elimination can be used as a sound preprocessing technique for projected model counting
- Introduction of a new data structure and corresponding algorithms tailored for leveraging blocked clause elimination dynamically during projected model counting
- Implementation of this machinery into the projected model counter d4
- Our experimental results show the benefits of using blocked clause elimination for projected model counting

Perspectives

- Considering the elimination of resolution-asymmetric tautologies (RAT), of covered or propagation-redundant (PR) clauses
- Designing novel branching heuristics to prioritize the elimination of clauses that prevent the removal of blocked clauses
- Assessing the benefits of using blocked clause elimination for other reasoning tasks
 - ▶ weighted Max#SAT problem
 - counting tree models of QBF formulas
- Combining definability and blocking clause elimination for the model counting problem