Unhiding Redundancy in SAT

Armin Biere

Deduction at Scale 2011

Ringberg Castle, Tegernsee, Germany

Motivation 1/21

e SAT solvers applied to huge formulas
— million of variables
— fastests solvers use preprocessing/inprocessing

— need cheap and effective inprocessing techniques for millions of variables

e this talk:
— unhiding redundancy in large formulas
— almost linear randomized algorithm
— using the binary implication graph

— fast enough to be applied to learned clauses

e paper submitted, available on request

Binary Implication Graph BIG 2/21

(@ave)N(avd)NbVd)N(bVe)A

@V AHNENYINEV)NV R)A
(8Vh)A

Transitive Reduction TRD 3/21

(@ave)N@avd)Nbvd)A(bVe)A
(EVHIN@VFINEV)N (FVR)A

YA (avevh)AN(bVEVRh)A(avVbVevdVeV fVg\Vh)
TRD

g—f—h

Hidden Tautology Elimination HTE 4/21

b h

/N v

c/a\d e f
N N
N NSNS

I

(@ave)N@avd)Nbvd)A(bVe)A
(EVHIN@VFINEV)N (FVR)A
fav-e-my A (bVEVRh)A(avVbVevdVeV £V gVh)
HTE

a—d—f—h

Hidden Tautology Elimination HTE 5/21

SN\
NN
< ANV AN

® |

(@ave)N@avd)Nbvd)A(bVe)A
YAV YNNGV)NV R)A

bve-hy A (avVbVevdVeV £V gVh)
HTE

c—f—h

o)
<
<

Self-Subsuming Resolution SSR

resolvent D subsumes second antecedent DVI

assume given CNF contains both antecedents

if D is added to CNFthen DVI can be removed

which in essence removes [from DVI

used in SATel.ite preprocessor

now common in many SAT solvers

6/21

aVvbVli avVbVeVl

aVb\Vc

.(avbVvl)(avbVcVl)---

4

(avbVvl)(avbVc)...

HTE = Reverse SSR + Tautology Elimination 7/21

hidden literal addition (HLA) uses SSR in reverse order

Cvl DVI avbVvl aVvbVcVi
C
D cehb aVb\Vc
assume given CNF contains resolvent and first antecedent ...(avbVvil)(avbVc)---
we can replace D by DV [..(avbVvD)(avbVcVi)...

which in essence adds [to D, repeat HLA until fix-point

keep remaining non-tautological clauses after removing added literals again

HTE = assume C V! is a binary clauses more general versions in the paper
remove clauses with a literal implied by negation of another literal in the clause

HTE confluent and BCP preserving modulo equivalent variable renaming

Hidden Literal Elimination HLE 8/21

better explained on binary implication graph

remove literal from a clause which implies another literal in the clause

..(avb)(bVvc)avevd)... = ...(avb)(bVc)(cVd)...

related work before all uses BCP:
e asymmetric branching implemented in MiniSAT but switched off by default
o distillation
e vivification
e caching technique in CryptoMiniSAT

HTE/HLE only uses the binary implication graph!

Hidden Literal Elimination HLE 9/21

b h

/N v

c/a\d e f
N T AN
\, NSNS

(@ave)N@avd)Nbvd)A(bVe)A
(EVHIN@VFINEV)N (FVR)A
(evbvevd eV F Vg vh)

HLE
all but e imply &
also b implies e

Hidden Literal Elimination HLE 10/21

NN
NN
< ANPANS

(@ave)N(avd)NbVd)N(bVe)A

EVINAVINEGV F)N(FVR)A
(eV h)

TRD + HTE + HLE 11/21

/\/\//7/
\/ /_

S NN

(@avd)N(bVvd)N(bVe)A
(dVINEV NV R)A

8

Failed Literal Elimination FL 12/21

actually quite old technique

assume literal I, BCP, if conflict, add unit [

rather costly to run until completion conjecture: at least quadratic
one BCP is linear and also in practice can be quite expensive

need to do it for all variables and restart if new binary clause generated

even on BIG (FL2) conjectured to be quadratic
..(avb)(bvc)(cvd)(dVva)... = addunitclause a

subsumed by running one HLA until completion

Equivalent Literal Substitution ELS

decompose BIG into strongly connect components (SCCs)

if there is an [with / and [in the same component = unsatisfiable
otherwise replace all literals by a “representative”

linear algorithm can be applied routinely during garbage collection

but as with failed literal preprocessing may generate new binary clauses

..(avb)(bVvc)(cVa)lavbVeVvd)... = ...(aVd)...

13/21

Time Stamping 14/21

DFS tree with discovered and finished times: [dsc(l),fin(l)]

a[2932] b[11,16] h[17.28]

c[3031] d[14,15] e[12,13] f[20,27] —= g [18,19]

f[2,5]\ /g[1,6] 5[25,2\61\ d;m{\ /5[7,101
h[3,4] a[22,23] b[89]
tree edges

parenthesis theorem: [ancestorin DFStree of k iff [dsc(k),fin(k)] C [dsc(l),fin(/)]

well known

ancestor relationship gives necessary conditions for (transitive) implication:

if [dsc(k),fin(k)] C [dsc({),fin(l)] then [—k

if [dsc(]),fin(])] C [dsc(k),fin(k)] then [—k

Unhiding: Applying Time Stamping to TRD/HTE/HLE/FL2/... 15/21

e time stamping in previous example does not cover b — h
[11,16] = [dsc(b),fin(b)] £ |dsc(h), fin(h)] = [3,4]

[17,28] = [dsc(h),fin(h)] £ [dsc(b),fin(b)] = [8,9]

in example still both HTE “unhidden”, HLE works too

“coverage” heavily depends on DFS order

as solution we propose multiple randomized DFS rounds/phases

SO we approximate a quadratic problem (reachability) randomly by a linear algorithm

if BIG is a tree one time stamping covers everything

Unhiding through Time Stamping 16/21

Unhiding (formula F) Stamp (literal I, integer stamp)
1 stamp =0 1 stamp = stamp + 1
2 foreach literal [in BIG(F) do 2 dsc(l) := stamp
3 dsc(l) :=0; fin(l) :==0 3 foreach (/\vI') € F>, do
: prt(l) :=1; root(l) :==1 4 if dsc(!’) =0 then
5 foreach r € RTS(F) do 5 prt(l’) ;=1
6 stamp := Stamp(r, stamp) 6 root(!") := root(l)
7 foreach literal / in BIG(F) do 7 stamp := Stamp(l', stamp)
8 if dsc(/) =0 then 8 stamp := stamp + 1
9 stamp := Stamp(l, stamp) 9 fin(l) := stamp
10 return Simplify (F) 10 return stamp

Simplify (formula F)
1 foreach Cc F
2 F:=F\{C}
3 if UHTE(C) then continue
4 F:=FU{UHLE(C)}
5 return F

Unhiding HTE 17/21

UHTE (clause C)
Ipos := first element in S7(C)
Ineg := first element in S~ (C)
while true
if dsc(lneg) > dsc(lpos) then
if /505 is last element in S7(C) then return false
lpos := Next element in ST(C)
else if fin(lheo) < fin(lpos) OF (|C| =2 and (lpos = Ineg OF prt(lpos) = Ineg)) then
if lheo is last element in S7(C) then return false
Iheg := Next element in S™(C)
else return true

O 0O J o U w N

=
(@]

ST(C) sequence of literals in C ordered by dsc()
S~ (C) sequence of negations of literals in C ordered by dsc()

O(|Cliog|C])

Unhldlng HLE 18/21

UHLE (clause C)
finished := finish time of first element in S, (C)
foreach [c S, (C) starting at second element
if fin(l) > finished then C :=C\ {/}
else finished := fin(l)
finished := finish time of first element in S~(C)
foreach / ¢ S~ (C) starting at second element

if fin({) < finished then C:=C\ {/}

else finished := fin(l)
return C

O© 0 J o ook w N

St (C) reverse of ST(C)

O(|Cllog|C)

Advanced Time Stamping

O J o U W

INCRENCRE O NI AR N O I O RN i el i e e e
NOUTd W NP OWOOWJoUudWwWwNDE OV

BSC
BSC
ELS
ELS
BSC
TRD
FLE
FLE
FLE
FLE
FLE
BSC
BSC
BSC
BSC
ELS
ELS
OBS
ELS
BSC
ELS
ELS
ELS
BSC
ELS
BSC

Stamp (literal 1, integer stamp)

stamp = stamp + 1
dsc(l) := stamp; obs(l) := stamp
flag := true /I'l represents a SCC
S.push(/) /I push [on SCC stack
foreach (V) e B
if dsc(l) < obs(I) then F := F\ {(I\V/')}; continue
if dsc(root()) < obs(/’) then
Itited =1)
while dSC(lfailed) > ObS(l/) do lfailed = prt(lfaﬂed)
F:=FU{(lailea)}
if dsc(/’) # 0 and fin(!") = 0 then continue
if dsc(!’) =0 then
prt(l') =1
root(") :=root(l)
stamp := Stamp(l’, stamp)
if fin(!’) = 0 and dsc(!’) < dsc(/) then
dsc(l) :=dsc(I'); flag := false // 1 is equivalent to I’
obs(!') :=stamp I/ Set last observed time attribute

if flug = true then /1'if [represents a SCC
stamp := stamp + 1
do
I' := S.pop() /I get equivalent literal
dsc(I') :=dsc(l) // assign equal discovered time
fin(l') := stamp // assign equal finished time
while /' # [

return stamp

19/21

Implementation 20/21

implemented as one inprocessing phase in our SAT solver Lingeling

bursts of randomized DFS rounds and sweeping over the whole formula

fast enough to be applicable to large learned clauses as well

e beside UHTE and UHLE we also have added hyper binary resolution UHBR

Lingeling 571 on SAT'09 Competition Application Benchmarks

21/21

configuration sol | sat | uns || unhd | simp elim

adv.stamp (no uhbr) 188 | 78 | 110 | 7.1% | 33.0% | 16.1%

adv.stamp (w/uhbr) 184 | 75 | 109 | 7.6% | 32.8% | 15.8%

basic stamp (no uhbr) | 183 | 73 | 110 | 6.8% | 32.3% | 15.8%

basic stamp (w/uhbr) | 183 | 73 | 110 | 7.4% | 32.8% | 15.8%

no unhiding 180 | 74 | 106 | 0.0% | 28.6% | 17.6%

configuration hte | stamp | redundant | hle | redundant || units | stamp
adv.stamp (no uhbr) 22 | 64% 59% || 291 77.6% || 935 | 357%
adv.stamp (W/thr) 26 67% /0% || 278 77.9% 941 58%
basic stamp (no uhbr) 6 0% 52% || 296 78.0% | 273 0%
basic stamp (w/uhbr) 7 0% 66% | 288 76.7% | 308 0%
no unhiding 0 0% 0% 0 0.0% 0 0%

