
Fueling the SAT Revolution in
Automated Reasoning

Armin Biere

50 Jahre KIT-Fakultät für Informatik
Karlsruhe Institut für Technologie

October 20, 2022

Biggest thing in Computer Science in the 21st century?

A

Biggest thing in Computer Science in the 21st century!

Automated Reasoning

stole this joke from an invited talk of Clark Barrett

Seriously . . . https://www.amazon.science/research-areas/automated-reasoning

https://www.amazon.science/research-areas/automated-reasoning

50 years of SAT NP-Complete

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

200 TB Biggest Math Proof Ever
HeuleKullmannMarek-SAT16 best paper https://www.cs.utexas.edu/˜marijn/ptn

Color the natural numbers N with two colors {•,•}, such that all pythagorean triples,

e.g., 32+42 = 52,

are NOT monochromatic?
have two colors

(x3∨ x4∨ x5)∧ (x̄3∨ x̄4∨ x̄5)∧
(x5∨ x12∨ x13)∧ (x̄5∨ x̄12∨ x̄13)∧
(x6∨ x8∨ x10)∧ (x̄6∨ x̄8∨ x̄10)∧
. . .

p cnf 7820 18930
3 4 5 0
-3 -4 -5 0
5 12 13 0
-5 -12 -13 0
...
5412 5635 7813 0
-5412 -5635 -7813 0
5474 5520 7774 0
-5474 -5520 -7774 0

Yes, for [1..7824] ⇒ SAT

No, for [1..7825] ⇒ UNSAT

https://www.cs.utexas.edu/~marijn/ptn

void encode () {

 int n = 7825;

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++) {

 int k = sqrt (i*i + j*j);

 if (k <= n && i*i + j*j == k*k)

 printf ("%d %d %d 0\n", i, j, k),

 printf ("%d %d %d 0\n", -i, -j, -k);

 }

}

Handbook’09

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

SAT Handbook 1st Edition (2009)

Knuth TAOCP Volume 4b Section 7.2.2.2 (300 pages)

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

Handbook’21

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

SAT Handbook 2nd Edition (2021)
editors Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh

with many updated chapters and the following 7 new chapters:

Proof Complexity Jakob Nordström and Sam Buss

SAT solving is a key technology for
21st entury computer science.

Edmund Clarke
2007 ACM Turing Award Recipient

The SAT problem is evidently a killer
app, because it is key to the solution
of so many other problems.

Donald Knuth
1974 ACM Turing Award Recipient

The SAT problem is at the core
of arguably the most fundamental
question in computer science:
What makes a problem hard?

Stephen Cook
1982 ACM Turing Award Recipient

Preprocessing Armin Biere, Matti Järvisalo and Benjamin Kiesl

Tuning and Configuration

Holger Hoos, Frank Hutter and Kevin Leyton-Brown

Proofs of Unsatisfiability Marijn Heule

Core-Based MaxSAT
Fahiem Bacchus, Matti Järvisalo and Ruben Martins

Proof Systems for Quantified Boolean Formulas
Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing and Martina Seidl

Approximate Model Counting Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel.: +1 703 830 6300
Email: sales@iospress.com

Visit our website www.iospress.com for online ordering
For ebooks, go to www.ebooks.iospress.com

Follow us on Twitter: @IOSPress_STM
Follow us on Facebook: publisheriospress

Handbook of Satisfiability
Second Edition

Editors: A. Biere, M. Heule, H. van Maaren, T. Walsh
Volume 336 of Frontiers in Artificial Intelligence and Applications

Propositional logic has been recognized throughout the centuries as one of the
cornerstones of reasoning in philosophy and mathematics. Over time, its
formalization into Boolean algebra was accompanied by the recognition that a wide
range of combinatorial problems can be expressed as propositional satisfiability (SAT)
problems. Because of this dual role, SAT developed into a mature, multi-faceted
scientific discipline, and from the earliest days of computing a search was underway to
discover how to solve SAT problems in an automated fashion.

This book, the Handbook of Satisfiability, is the second, updated and revised edition of
the book first published in 2009 under the same name. The handbook aims to capture
the full breadth and depth of SAT and to bring together significant progress and
advances in automated solving. Topics covered span practical and theoretical research
on SAT and its applications and include search algorithms, heuristics, analysis of
algorithms, hard instances, randomized formulae, problem encodings, industrial
applications, solvers, simplifiers, tools, case studies and empirical results. SAT is
interpreted in a broad sense, so as well as propositional satisfiability, there are
chapters covering the domain of quantified Boolean formulae (QBF), constraints
programming techniques (CSP) for word-level problems and their propositional
encoding, and satisfiability modulo theories (SMT). An extensive bibliography
completes each chapter.

This second edition of the handbook will be of interest to researchers, graduate
students, final-year undergraduates, and practitioners using or contributing to SAT,
and will provide both an inspiration and a rich resource for their work.

Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st
century computer science."

Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key
to the solution of so many other problems."

Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably
the most fundamental question in computer science: What makes a problem hard?"

IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel.: +31 20 688 3355
Email: order@iospress.nl

February 2021
Approx. 1516 pp.

Print book
Hardcover, in 2 parts
ISBN: 978-1-64368-160-3
(print)
€200 / US$250 / £180
excl. VAT

Ebook
ISBN: 978-1-64368-161-0
(online)
€200 / US$250 / £180
excl. VAT

Discount Code
Order your print book
before April 15, 2021 and
get 35% off!
Code: SAT2021

For more information
and ordering check
tiny.cc/SAT2021

–35%

Visit our website www.iospress.com for online ordering
For ebooks, go to www.ebooks.iospress.com

Follow us on Twitter: @IOSPress_STM
Follow us on Facebook: publisheriospress

Part I. Theory and Algorithms

Chapter 1. A History of Satisfiability
John Franco and John Martin, with sections contributed by
Miguel Anjos, Holger Hoos, Hans Kleine Büning, Ewald
Speckenmeyer, Alasdair Urquhart, and Hantao Zhang

Chapter 2. CNF Encodings
Steven Prestwich

Chapter 3. Complete Algorithms
Adnan Darwiche and Knot Pipatsrisawat

Chapter 4. Conflict-Driven Clause Learning SAT Solvers
Joao Marques-Silva, Ines Lynce, and Sharad Malik

Chapter 5. Look-Ahead Based SAT Solvers
Marijn J.H. Heule and Hans van Maaren

Chapter 6. Incomplete Algorithms
Henry Kautz, Ashish Sabharwal, and Bart Selman

Chapter 7. Proof Complexity and SAT Solving
Sam Buss and Jakob Nordström

Chapter 8. Fundaments of Branching Heuristics
Oliver Kullmann

Chapter 9. Preprocessing in SAT Solving
Armin Biere, Matti Järvisalo, and Benjamin Kiesl

Chapter 10. Random Satisfiability
Dimitris Achlioptas

Chapter 11. Exploiting Runtime Variation in Complete Solvers
Carla P. Gomes and Ashish Sabharwal

Chapter 12. Automated Configuration and Selection of SAT
Solvers
Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown

Chapter 13. Symmetry and Satisfiability
Karem A. Sakallah

Chapter 14. Minimal Unsatisfiability and Autarkies
Hans Kleine Büning and Oliver Kullmann

Chapter 15. Proofs of Unsatisfiability
Marijn J.H. Heule

Chapter 16. Worst-Case Upper Bounds
Evgeny Dantsin and Edward A. Hirsch

Chapter 17. Fixed-Parameter Tractability
Marko Samer†(1977-2010) and Stefan
Szeider

Part II. Applications and Extensions

Chapter 18. Bounded Model Checking
Armin Biere

Chapter 19. Planning and SAT
Jussi Rintanen

Chapter 20. Software Verification
Daniel Kroening

Chapter 21. Combinatorial Designs by SAT Solvers
Hantao Zhang

Chapter 22. Connections to Statistical Physics
Fabrizio Altarelli, Rémi Monasson, Guilhem Semerjian and
Francesco Zamponi

Chapter 23. MaxSAT, Hard and Soft Constraints
Chu Min Li and Felip Manyà

Chapter 24. Maximum Satisfiability
Fahiem Bacchus, Matti Järvisalo, and Ruben Martins

Chapter 25. Model Counting
Carla P. Gomes, Ashish Sabharwal, and Bart Selman

Chapter 26. Approximate Model Counting
Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

Chapter 27. Non-Clausal SAT and ATPG
Rolf Drechsler, Tommi Junttila and Ilkka Niemelä

Chapter 28. Pseudo-Boolean and Cardinality Constraints
Olivier Roussel and Vasco Manquinho

Chapter 29. Theory of Quantified Boolean Formulas
Hans Kleine Büning and Uwe Bubeck

Chapter 30. Reasoning with Quantified Boolean Formulas
Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano

Chapter 31. Quantified Boolean Formulas
Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, Martina Seidl

Chapter 32. SAT Techniques for Modal and Description Logics
Roberto Sebastiani and Armando Tacchella

Chapter 33. Satisfiability Modulo Theories
Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli

Chapter 34. Stochastic Boolean Satisfiability
Stephen M. Majercik

Subject Index

Cited Author Index

Contributing Authors and Affiliations

Contents

IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel.: +31 20 688 3355
Email: order@iospress.nl

IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel.: +1 703 830 6300
Email: sales@iospress.com

60 Years of SAT Solving

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

DPLL from the 60ies [DaviesPutnam’62][DavisLogemannLoveland’62]

DPLL(F)

F := BCP(F) boolean constraint propagation

if F =⊤ return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

̸= CDCL

DPLL Example

a

clauses

v b v ca

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

b

c

c

c b b

a

b c

b =

a =

c =

1

0

1 BCP

decision

decision

CDCL from the 90ies [MarquesSilvaSakallah’96]

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

CDCL from the 90ies [MarquesSilvaSakallah’96]

int basic_cdcl_loop () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else decide (); // otherwise pick next decision

 return res;

}

CDCL Example

c

a v b

a v blearn

a

b

b =

a =

c =

1

0

1 BCP

decision

decision

clauses

v b v ca

a v b v c

a v b v c

v c

a v b v c

a v b v c

a v b v c

a v b v c

CDCL Example

a v b

b
c

b

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

a v b v c

v b

0

BCP

BCP

decision a

learn

CDCL Example

a v b

b

a

a

c

b

a

a v b v c

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

BCP

decision

BCP

clearn

CDCL Example

a v b

b

a

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

a BCP

BCP

c

c BCP

b

a v b v c

learn

empty clause

More Advanced CDCL Loop with Reduce and Restart

int basic_cdcl_loop_with_reduce_and_restart () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else if (restarting ()) restart (); // restart by backtracking

 else if (reducing ()) reduce (); // collect useless learned clauses

 else decide (); // otherwise pick next decision

 return res;

}

Inprocessing CaDiCaL CDCL Loop https://github.com:arminbiere/cadical

https://github.com:arminbiere/cadical

Probabilistic local search SAT solvers WalkSAT’94 ProbSAT’12

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

WalkSAT’94 [SelmanKautzCohen’94] [McAllesterSelmanKautz’97]

generate a random 0/1 initial assignment for all literals L

while (exists unsatisfied clause C in formula) {

 with probability p

 pick literal L in C which breaks minimial number clauses

 otherwise with probability 1-p pick random literal L in C

 flip literal L

}

ProbSAT’12 [BalintSchöning-SAT’12]

generate a random 0/1 initial assignment for all literals L

while (exists unsatisfied clause C in formula) {

 let s(L) be the number clauses broken by flipping L

 pick L probabilistically with probability 2^-s(L)

 flip literal L

}

Satisfiability Modulo Theories (SMT) aka CDCL(T) from around 2000

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

Planning
SAT for

Inprocessing

Bounded
Variable

Elimination

SAT Chapter

Avatar

NP complete
CDCL

ProbSAT

1st SAT

Tseitin
Encoding

Donald Knuth

everywhere
SAT & SMT

1960 1970 1980 1990 2000 2010
QBF
working

Parallel
Massively

Handbook of SAT (1st)

Handbook of SAT (2nd)

Solvers
Arithmetic

2020

LBD

VSIDS

MiniSAT

SAT

DPLL

Proofs

Competition

Bounded Model Checking
Cube & Conquer

Modes
LS+CDCL

Phases
Target

SMT

*

Satisfiability Modulo Theories (SMT) aka CDCL(T)

f (x) ̸= f (y) ∧ x+u = 3 ∧ v+ y = 3 ∧ u = t[z] ∧ v = t[w] ∧ z = w

originally unquantified formulas in first-order logic

interpreted symbols over various theories

basic theory of equality, uninterpreted functions

arithmetic expressions (linear, non-linear, integer, reals)

theory of bit-vectors and floating-points to model bit-precise reasoning of HW/SW

arrays (McCarthy axioms) to model memory / pointers

strings to model regular expressions

standardized input-format / semantics SMT-LIB

popular SMT solvers: CVC, Yices, Z3, Boolector, . . .

x∗100010008 = y ∧ x >> 3 = y ∧ x[3..0] = y[7..4]

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
an

ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

some Tweets

more

Tweets

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

All Time Winners on SAT Competition 2021 Benchmarks

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●● ●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●● ● ●● ●●●●●●●●●● ● ● ●●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●● ●●●●●●●● ●●●●●

●●●●●●●●●●● ●● ●●●●●● ● ● ●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●●●●
●●●●●● ●●●● ●●●●●●● ●●●● ● ● ●● ● ●● ● ●●●● ●●● ●●●●●●● ●●●● ●●● ●● ●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●
● ●●● ●●●●●● ●●●●●●●●●●●●● ●●● ● ●● ●●●●●

● ●●● ●● ● ●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●● ●●●●● ● ●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●● ● ●

●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●●●●●
●●●●●
●●●●●
● ●●●●● ● ●● ● ● ●● ●● ● ●●● ●

●

●

●

●

●

●

●

kissat−mab−2021
kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−2017
maple−lcm−dist−cb−2018
maple−comsps−drup−2016
abcdsat−2015
lingeling−2014
glucose−2011
glucose−2012
lingeling−2013
minisat−2008
precosat−2009
cryptominisat−2010
minisat−2006
rsat−2007
satelite−gti−2005
berkmin−2003
zchaff−2001
zchaff−2004
limmat−2002
grasp−1997

0 1000 2000 3000 4000 5000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Kissat_MAB−HyWalk
kissat_inc
kissat_pre
Kissat_MAB_MOSS
ekissat−mab−db−v1
Kissat_MAB_UCB
kissat−mab−gb
Kissat_MAB_ESA
ekissat−mab−gb−db
ekissat−mab−db−v2
SeqFROST−ERE−All
kissat−sc2022−bulky
SeqFROST−NoExtend
CaDiCaL−watchsat−lto
cadical_rel_Scavel
CaDiCaL_DVDL_V1
LSTech_CaDiCaL
kissat−els−v3
CadicalReorder
kissat−sc2022−hyper

Top 20 solvers main sequential track
SAT Competition 2022

0 200 400 600 800 1,000
0

1,000

2,000

3,000

4,000

5,000

wallclock time

an
n
iv
er
sa
ry

in
st
an

ce
s
(A

L
L
)

mallob-kicaliglu (cloud winner)
mallob-ki (parallel winner)
kissat-sc2022-bulky (sequential winner)

Cloud vs Parallel vs Sequential
SAT Competition 2022

Copyright SAT Competition 2022 Organizers

[SchreiberSanders'22]

[SchreiberSanders'22]

[Biere'22]

[BiereChowdhuryHeuleKieslWhalen’SAT22]Migrating Solver State
Armin Biere �Â

University of Freiburg, Germany

Md Solimul Chowdhury �Â

Carnegie Mellon University, USA

Marijn J.H. Heule � Â

Carnegie Mellon University,
Amazon Web Services, Inc., USA

Benjamin Kiesl � Â

Amazon Web Services, Inc., Germany

Michael W. Whalen � Â

Amazon Web Services, Inc.,
The University of Minnesota, USA

Abstract
We present approaches to store and restore the state of a SAT solver, allowing us to migrate the
state between different compute resources, or even between different solvers. This can be used in
many ways, e.g., to improve the fault tolerance of solvers, to schedule SAT problems on a restricted
number of cores, or to use dedicated preprocessing tools for inprocessing. We identify a minimum
viable subset of the solver state to migrate such that the loss of performance is small. We then
present and implement two different approaches to state migration: one approach stores the state at
the end of a solver run whereas the other approach stores the state continuously as part of the proof
trace. We show that our approaches enable the generation of correct models and valid unsatisfiability
proofs. Experimental results confirm that the overhead is reasonable and that in several cases solver
performance actually improves.

2012 ACM Subject Classification Theory of computation

Keywords and phrases SAT, SMT, Cloud Computing, Serverless Computing

Funding Md Solimul Chowdhury: partially supported by NSF grant CCF-2015445
Marijn J.H. Heule: partially supported by NSF grant CCF-2015445

1 Introduction

Satisfiability solvers are powerful tools that are used in a wide range of applications, including
hardware and software verification [15, 33]. When used in practice, the runtime of solvers
can vary significantly: while for some applications solvers take just a few milliseconds, for
others they require large amounts of time, often several hours or even days. Especially in the
latter case, being able to stop a solver and resume its computation at a later point—possibly
even on different hardware—opens up multiple opportunities.

For example, a user performing long-running SAT jobs on their computer can benefit
from the ability to resume a job at any time (instead of having to start from scratch) in
case it failed, e.g., due to power outage or other kinds of hardware failure. Similarly, in a
cloud environment where software must be resilient against hardware failures, and where the
runtime of jobs is often restricted (e.g., in serverless environments such as AWS Lambda [3]),
being able to migrate the state of a solver to a different compute architecture enables
significant flexibility in architecting and hosting SAT solvers.

But better fault-tolerance and increased flexibility are not the only benefits of migrating
solver state. If the state is stored in a solver-agnostic way, we can combine multiple solvers to

Machine Learning || Automated Reasoning

Arithmetic Solvers

SAT

SMT

Model Checking Automatic Theorem Proving

CP

ILP
MIP

MaxSAT

QBF

Interactive Theorem Proving

Automated Reasoning Technologies

Challenges

Local Search for UNSAT

Parallel Automated Reasoning

Even more Scalability and Automation

Combining Precise and Inprecise Reasoning

Education in Logic and Automated Reasoning

