
SAT Solving for Model Checking and Beyond

Armin Biere
Johannes Kepler University

Linz, Austria

HVC’15
11th Haifa Verification Conference

IBM Research, Haifa, Israel

Thursday, 19th November, 2015

Armin Biere. µcke - efficient µ-calculus model checking. In Orna Grumberg, editor, Computer
Aided Verification, 9th International Conference, CAV’97, Haifa, Israel, June 22-25, 1997.
Volume 1254 of Lecture Notes in Computer Science., Springer (1997) 468–471

µcke – Efficient µ-Calculus Model Checking
Armin Biere1

armin@ira.uka.de, Institut für Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe, Germany

Abstract. In this paper we present an overview of the verification tool µcke. It
is an implementation of a BDD-based µ-calculus model checker and uses several
optimization techniques that are lifted from special purpose model checkers to the
µ-calculus. This gives the user more expressibility without loosing efficiency.

Introduction

In [5] µ-calculus model checking with BDDs has been proposed as a general framework
for various verification problems like model checking of LTL and CTL or testing for
bisimulation equivalence and language containment. With a µ-calculus model checker
all these verification tasks could be handled with one tool. Also some applications of
symbolic model checking [16] need the µ-calculus as a specification language. On the
other hand the most successful applications of model checking [7,2,15,10] all used a
model checker with a less expressive specification language than the µ-calculus. The
reason for this restriction was that for special purpose specification languages optimized
model checkers can easily be build [5].

For example the SMV system of McMillan [14] uses fixed allocations of BDD vari-
ables for µ-calculus variables (ordering of BDD variables) for current and next state vari-
ables and specialized algorithms (collapse) for the computation of the set of states
reachable in one step from a given set of states.

Other optimizations [4,14] that avoid the construction of the global transition re-
lation (incremental transition relation generation, partitioning, MBFS) or speed up the
computation (forward analysis, frontier set simplification) were only presented for state
space analysis or CTL model checking.

In [3] we have shown that all these optimizations can be lifted to the µ-calculus. Es-
pecially an automatic allocation algorithm for BDD variables is given. It operates on
allocation constraints to generate an allocation that respects the heuristic that all substi-
tutions needed for the evaluation of a µ-calculus term should be fast (fast substitutions
do not change the structure of a BDD but only change the variable markings). This is a
generalization of the annotation mechanism of [11].

We also presented the composeite9 algorithm that is a generalization of the BDD al-
gorithm collapse of the SMV system and of the preImg-Operator of [8]. It performs
a substitution, the calculation of “if�then�else” and a quantification in one pass and thus
avoids the unnecessary construction of intermediate results.

For the evaluation of these methods we implemented the µ-calculus model checker
µcke. The main goal was to construct a µ-calculus model checker that is as efficient as

1 sup. by DFG GRK 209/2-96 “Graduiertenkolleg Beherrschbarkeit Komplexer Systeme”

Arne Borälv. The Industrial Success of Verification Tools Based on Stålmarck’s Method .
In Orna Grumberg, editor, Computer Aided Verification, 9th International Conference,
CAV’97, Haifa, Israel, June 22-25, 1997. Volume 1254 of Lecture Notes in Computer
Science., Springer (1997) 468–471

Symbolic Model Checking without BDDs?

Armin Biere1, Alessandro Cimatti2, Edmund Clarke1, and Yunshan Zhu1

1 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A

fArmin.Biere,Edmund.Clarke,Yunshan.Zhu g@cs.cmu.edu
2 Istituto per la Ricerca Scientifica e Tecnologica (IRST)

via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, like St˚almarck’s Method [16] or the Davis & Put-
nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingprocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC , based on bounded model checking, and preliminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,

? This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No. CCR-9505472.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.

Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

look only for counter example made of k states “k” = bound

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

simple for safety properties p invariantly true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∨

i=0
¬p(si)

harder for liveness properties p eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∧

i=0
¬p(si) ∧

k∨
l=0

T (sk,sl)

compute and bound k by diameter

Copyrighted
Material

Impact of BMC
● widespread use in industry (EDA)

– industry embraced bounding part immediately

– original industrial reservations: using SAT vs ATPG

– original academic reservations: incompleteness?

● BMC relies on efficient SAT (SMT) solving
– breakthroughs in SAT: CDCL '96, VSIDS '01, ...

– encouraged investment in SAT / SMT research

● extensions to non-boolean domains and SW
– bounding reduces complexity / decidability

● extensions to completeness
– diameter checking, k-induction, interpolation

– SAT based model checking without unrolling: IC3

A Short Story on 15 years of

Bounded Model Checking
●1997: interest and capacity of BDDs stalled

but there were success stories of other techniques
● Ed Clarke hired Yunshan Zhu & Armin Biere as Post-Docs:

Use SAT for Symbolic Model Checking!
●struggled for 10 months to come up with something that could
replace / improve BDDs (mainly looked at QBF then)
●Alessandro Cimatti came to an AI conference in Pittsburgh and
at lunch (at an Indian Restaurant) we realized, that in
AI Planing they do not care about completeness

 What if we apply this to model checking?
 How to handle temporal logic?

● After one afternoon for the theory and 3 months of
implementation and benchmarking later: TACAS submission

SAT Based Model Checking

● BMC
● k-induction
● Abstractions / CEGAR
● Interpolation
● IC3

SAT Based Model Checking

Armin Biere, Daniel Kröning

Handbook of Model Checking

Edmund Clarke, Thomas Henzinger, Helmut Veith, editors

Lessons from BMC

● simple but useful ideas are very controversial
– hard to get accepted (literally)

– many comments of the sort: we did this before …

– main points: make it work, show that it works!

● in retrospective
– classification considerations might have been useful since

we tried to use SAT for symbolic model checking without
taking Savitch's theorem into account

– but might have prevented us going along that route ...

Some Complexity Classes 15/35

P
problems with polynonmially time-bounded algorithms

bounds measured in terms of input (file) size

NP
same as P but with non-determininistic choice

needs a SAT solver

PSPACE
as P but space-bounded

QBF and bit-level model checking fall in this class

NEXPTIME
same as NP but with exponential time

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME
usually it is assumed: P 6= NP

it is further known: NP 6= NEXPTIME

P

NEXPTIME

PSPACE

NP

SAT Solving for Model Checking and Beyond @ HVC’15

Complexity Concretely 16/35

NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schönfinkel class (EPR): no functions, ∃∗∀∗ prefix

QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF BV

SAT Solving for Model Checking and Beyond @ HVC’15

NEXPTIME Completeness of Bit-Vectors 17/35

QF BV contained in NEXPTIME

bit-blast (single exponentially)

give resulting formula to SAT solver

we showed QF BV is NEXPTIME hard by reducing DQBF to QF BV

∀x0,x1,x2,x3,x4 ∃e0(x0,x1,x2,x3),e1(x1,x2,x3,x4) ϕ

polynomially encodes dependencies (for Henkin quantiers)

my student has now an (yet unpublished) direct proof

why are bit-vectors NEXPTIME complete? x,y : bool[1000000]

y 6= x ∧ x+ y = x� 1(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

SAT Solving for Model Checking and Beyond @ HVC’15

Bit-Wise Operators and Shifting Neighbouring Bits Only 18/35

NP complete: QF BVbw

relate same bits: equality and all bit-wise operators

similar to well-known Ackermann reduction

PSPACE complete: QF BVbw,<<1

only allow operators which relate neighbouring bits:

base operators: equality, inequality/comparison, bit-wise ops, shift-by-one

extended operators: addition, multiplication by constants, single-bit-slices etc.

encode in symbolic model checking logarithmically in bit-width

see our CSR’12, SMT’13 papers and our 2015 journal article in TOCS.

came accross otherwise unsolvable benchmarks from industry!

SAT Solving for Model Checking and Beyond @ HVC’15

Commutativity of Bit-Vector Addition in SMV 19/35

MODULE main

VAR

c : boolean; -- carry ’bvadd x y’

d : boolean; -- carry ’bvadd y x’

x : boolean; -- x0, x1, ...

y : boolean; -- y0, y1, ...

ASSIGN

init (c) := FALSE;

init (d) := FALSE;

ASSIGN

next (c) := c & x | c & y | x & y;

next (d) := d & y | d & x | y & x;

DEFINE

o := c != (x != y);

p := d != (y != x);

SPEC

AG (o = p)

SAT Solving for Model Checking and Beyond @ HVC’15

Commutativity of Bit-Vector Addition in AIGER 20/35

2

x

4

y

10

6

12 14

16

18

20

8

22

24

26

2830

32

34 36

38

40 42

44

4648

50

AIGER_NEVER_0

c d

SAT Solving for Model Checking and Beyond @ HVC’15

Hardware Model Checking Competition (HWMCC) 21/35

2007

1st

HWMCC

CAV’07

Berlin

2008

Princeton

2nd

HWMCC

CAV’08

HWMCC Lunch

FMCAD’08

Portland

2011

Austin

FMCAD’11

HWMCC

4th

2010

3rd

HWMCC

CAV’10

FLOC’10

Edinburgh

2013

6th

Portland

FMCAD’13

HWMCC

USA

2006

AIGER format

Ascona

AVM’06

CAV’06

Founding Lunch

FLOC’06

Seattle

2012

FMCAD’12

HWMCC

5th

Cambridge

UK

2014

7th

HWMCC

CAV’14

Vienna

Austria

HWMCC

2015

FLOC’14 FMCAD’15

USA

Austin

8th

founding lunch at CAV’06, first competition at CAV’07

HWMCC lunch at FMCAD’08⇒ need multiple properties !!!

affilliated with either CAV (7,8,10,14) or FMCAD (11,12,13,15)

HWMCC’11: old SINGLE, new LIVEness and new MULTI property track

HWMCC’12 as HWMCC’11, new DEEP bounds track sponsored by Oski

in essence no change in HWMCC’12 - HWMCC’15

HWMCC’15: DEEP, SINGLE, and LIVE, MULTI, 1h time limit, before 15min

20 Model Checkers in HWMCC’15 22/35

abcsimple, abcsimplive, abcsuprove from Berkeley Brayton,Sterin,Mishchenko,. . .

aigbmc, blimc from JKU Linz Biere

avy from Technion+SEI+Princeton Vizel,Gurfinkel,Malik

iimc from Boulder Somenzi,Bradley,Hassan

iprover(hc),iproverdeep(hc) from Manchester Tsarkov,Korovin

nuxmv,nuxmvbmc from Trento Griggio,Roveri,. . .

pdtravdeep, pdtravthrd from Torino Cabodi,Quer,. . .

ricecnu from Rice Li,Vardi

shiftbmc from Dresden Manthey

tip2014, tip2014bmc from Chalmers Sörensson,Claessen

v3s from Taipei Yang,Wu,Huang

SAT Solving for Model Checking and Beyond @ HVC’15

0 100 200 300

0
10

00
20

00
30

00

HWMCC'15 Cactus SINGLE Track SAT+UNSAT

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●

●●●
●●
●●
●●
●
●
●●
●●●

●
●
●●
●●

●

●●

●
●

●

●
●

●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●
●●

●●
●●●●●

●●●●
●●●

●●
●

●
●

●
●●
●

●
●

●
●●

●
●

●

●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●●
●●●

●●
●●●

●●
●●●

●●
●●●

●●
●

●
●

●

●

●

●
●●

●●
●●

●●
●

●

●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●

●●●●●●●
●●●●

●●●
●●
●●

●
●●

●
●

●

●

●●●
●●●●●

●●●
●●

●

●
●
●

●●
●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

abcsimple
abcsuprove
nuxmv
pdtravthrd
avy
iimc
tip2014
v3s
blimc
aigbmc
shiftbmc
tip2014bmc
nuxmvbmc
iproverhc
pdtravdeep
ricecnu
iproverdeephc
iproverdeep
iprover

 HWMCC’15 Table SINGLE SAT+UNSAT

rank cnt ok sat uns fld to mo s11 s6 unk real time max best uniq

1 abcsimple 548 363 122 241 185 154 31 0 0 0 45438 161407 6785 28 1
 abcsuprove 548 358 120 238 190 156 34 0 0 0 41596 115597 6905 23 1
2 nuxmv 548 357 127 230 191 165 26 0 0 0 47600 186902 6900 30 0
 pdtravthrd 548 353 115 238 195 62 124 3 0 6 52819 158951 6824 18 3
3 avy 548 345 115 230 203 171 30 0 0 2 49724 166878 5924 19 1
 iimc 548 335 105 230 213 163 50 0 0 0 57840 202386 6969 76 7
 tip2014 548 315 98 217 233 233 0 0 0 0 46817 46596 1062 144 0
 v3s 548 296 62 234 252 141 7 102 2 0 54273 152125 6037 28 4
 blimc 548 141 128 13 407 287 20 0 0 100 31687 31584 2241 61 1
 aigbmc 548 126 126 0 422 310 43 0 0 69 34210 34104 3644 47 1
 shiftbmc 548 120 120 0 428 247 12 0 0 169 37819 37697 1810 28 0
 tip2014bmc 548 117 117 0 431 225 50 0 0 156 11054 10911 5496 64 1
 nuxmvbmc 548 115 115 0 433 256 28 0 0 149 8885 8796 2504 45 0
 iproverhc 548 112 64 48 436 156 0 0 0 280 32269 17292 6730 3 0
 pdtravdeep 548 105 46 59 443 345 86 4 0 8 14725 14568 4202 11 0
 ricecnu 548 100 30 70 440 342 88 0 10 0 49153 49054 2204 0 0
iproverdeephc 548 93 46 47 455 177 0 0 0 278 18116 17482 6728 2 0
 iproverdeep 548 86 46 40 462 149 0 0 0 313 14899 14818 6322 1 0
 iprover 548 83 43 40 465 59 0 0 0 406 8768 8698 6176 3 0

hors concours (not ranked):

 aigbmc blimc: organizer model checkers
 pdtravthrd: issue catching ’FATAL’ for ’intel045’ (not counted)
 ricecnu: reports 8 instances SAT which are UNSAT (not counted)
 iprover*hc: last minute (script) fixes after deadline

each team / submitter only ranked once (one medal maximum)

from Daniel Le Berre

Personal SAT Solver History 27/35

19801960 2000 20101970 2020

DPL
SAT Chapter
Donald Knuth

DP

CDCL

LBD

Phase

Tseitin
Encoding

BMC

SAT
NP complete

SAT
everywhere

QBF

Solvers

Massively
Parallel

Arithmetic

working

WalkSAT

GSAT

Handbook of SAT

ProbSAT

Saving

Avatar

Inprocessing

Cube & Conquer

VSIDS

SMT

Bounded
Variable

Elimination

competition

Look Ahead

SAT for
Planing

1st SAT

1990

Portfolio

*

SAT Solving for Model Checking and Beyond @ HVC’15

Competitions, Benchmarks, Science 34/35

competitions are used to

compare and evaluate implementations and algorithms

generate benchmarks used in papers

SAT competition is one of the largest competitions

many solvers, highly competitive

portfolio solving, over-tuning issues

benchmark selection scheme broken due to competing goals:

assess the state-of-the-art

high-light new ideas

give a fair chance to everybody

research in SAT solving, verification, etc. in essence empirical science
benchmark selection critical

how to select benchmarks?

for the competition?

in your papers?

SAT Solving for Model Checking and Beyond @ HVC’15

Conclusion 35/35

what I did not talk about ... (yet)

parallel SAT

QBF / quantifiers in general

huge improvements in local research in recent years

how to apply local search to bit-vectors and SMT

testing / debugging

assertion synthesis

acknowledgements:

Ed Clarke, all co-authors, collaborators, students and Post-Docs
and if would list more names I would struggle with order and probably forget somebody

if you have model checking, SMT, or SAT problems you want share let me know . . .

looking for Post-Doc’s and PhD students too

SAT Solving for Model Checking and Beyond @ HVC’15

