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Abstract. In this paper we present an overview of the verification tool µcke. It
is an implementation of a BDD-based µ-calculus model checker and uses several
optimization techniques that are lifted from special purpose model checkers to the
µ-calculus. This gives the user more expressibility without loosing efficiency.

Introduction

In [5] µ-calculus model checking with BDDs has been proposed as a general framework
for various verification problems like model checking of LTL and CTL or testing for
bisimulation equivalence and language containment. With a µ-calculus model checker
all these verification tasks could be handled with one tool. Also some applications of
symbolic model checking [16] need the µ-calculus as a specification language. On the
other hand the most successful applications of model checking [7,2,15,10] all used a
model checker with a less expressive specification language than the µ-calculus. The
reason for this restriction was that for special purpose specification languages optimized
model checkers can easily be build [5].

For example the SMV system of McMillan [14] uses fixed allocations of BDD vari-
ables for µ-calculus variables (ordering of BDD variables) for current and next state vari-
ables and specialized algorithms (collapse) for the computation of the set of states
reachable in one step from a given set of states.

Other optimizations [4,14] that avoid the construction of the global transition re-
lation (incremental transition relation generation, partitioning, MBFS) or speed up the
computation (forward analysis, frontier set simplification) were only presented for state
space analysis or CTL model checking.

In [3] we have shown that all these optimizations can be lifted to the µ-calculus. Es-
pecially an automatic allocation algorithm for BDD variables is given. It operates on
allocation constraints to generate an allocation that respects the heuristic that all substi-
tutions needed for the evaluation of a µ-calculus term should be fast (fast substitutions
do not change the structure of a BDD but only change the variable markings). This is a
generalization of the annotation mechanism of [11].

We also presented the composeite9 algorithm that is a generalization of the BDD al-
gorithm collapse of the SMV system and of the preImg-Operator of [8]. It performs
a substitution, the calculation of “if�then�else” and a quantification in one pass and thus
avoids the unnecessary construction of intermediate results.

For the evaluation of these methods we implemented the µ-calculus model checker
µcke. The main goal was to construct a µ-calculus model checker that is as efficient as
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Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, like St˚almarck’s Method [16] or the Davis & Put-
nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingprocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC , based on bounded model checking, and preliminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,
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No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No. CCR-9505472.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.



Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

look only for counter example made of k states “k” = bound

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

simple for safety properties p invariantly true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∨

i=0
¬p(si)

harder for liveness properties p eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∧

i=0
¬p(si) ∧

k∨
l=0

T (sk,sl)

compute and bound k by diameter
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Impact of BMC
● widespread use in industry (EDA)

– industry embraced bounding part immediately

– original industrial reservations:  using SAT vs ATPG

– original academic reservations:  incompleteness?

● BMC relies on efficient SAT (SMT) solving
– breakthroughs in SAT: CDCL '96, VSIDS '01, ...

– encouraged investment in SAT / SMT research

● extensions to non-boolean domains and SW
–  bounding reduces complexity / decidability

● extensions to completeness
– diameter checking, k-induction, interpolation

– SAT based model checking without unrolling: IC3



  

A Short Story on 15 years of

Bounded Model Checking
●1997: interest and capacity of BDDs stalled

but there were success stories of other techniques
●  Ed Clarke hired Yunshan Zhu & Armin Biere as  Post-Docs:

Use SAT for Symbolic Model Checking!
●struggled for 10 months to come up with something that  could 
replace / improve BDDs (mainly looked at QBF then)
●Alessandro Cimatti came to an AI conference in Pittsburgh and 
at lunch (at an Indian Restaurant) we realized, that in
AI Planing they do not care about completeness

 What if we apply this to model checking?
 How to handle temporal logic?

● After one afternoon for the theory and 3 months of 
implementation and benchmarking later: TACAS submission



  



  



  

SAT Based Model Checking

● BMC
● k-induction
● Abstractions / CEGAR
● Interpolation
● IC3

SAT Based Model Checking

Armin Biere, Daniel Kröning

Handbook of Model Checking

Edmund Clarke, Thomas Henzinger, Helmut Veith, editors



  

Lessons from BMC

● simple but useful ideas are very controversial
– hard to get accepted (literally)

– many comments of the sort:  we did this before …

– main points: make it work, show that it works!

● in retrospective
– classification considerations might have been useful since 

we tried to use SAT for symbolic model checking without 
taking Savitch's theorem into account

– but might have prevented us going along that route ...



Some Complexity Classes 15/35

P
problems with polynonmially time-bounded algorithms

bounds measured in terms of input (file) size

NP
same as P but with non-determininistic choice

needs a SAT solver

PSPACE
as P but space-bounded

QBF and bit-level model checking fall in this class

NEXPTIME
same as NP but with exponential time

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME
usually it is assumed: P 6= NP

it is further known: NP 6= NEXPTIME

P

NEXPTIME

PSPACE

NP

SAT Solving for Model Checking and Beyond @ HVC’15



Complexity Concretely 16/35

NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schönfinkel class ( EPR ): no functions, ∃∗∀∗ prefix

QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF BV

SAT Solving for Model Checking and Beyond @ HVC’15



NEXPTIME Completeness of Bit-Vectors 17/35

QF BV contained in NEXPTIME

bit-blast (single exponentially)

give resulting formula to SAT solver

we showed QF BV is NEXPTIME hard by reducing DQBF to QF BV

∀x0,x1,x2,x3,x4 ∃e0(x0,x1,x2,x3),e1(x1,x2,x3,x4) ϕ

polynomially encodes dependencies (for Henkin quantiers)

my student has now an (yet unpublished) direct proof

why are bit-vectors NEXPTIME complete? x,y : bool[1000000]

y 6= x ∧ x+ y = x� 1(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

SAT Solving for Model Checking and Beyond @ HVC’15



Bit-Wise Operators and Shifting Neighbouring Bits Only 18/35

NP complete: QF BVbw

relate same bits: equality and all bit-wise operators

similar to well-known Ackermann reduction

PSPACE complete: QF BVbw,<<1

only allow operators which relate neighbouring bits:

base operators: equality, inequality/comparison, bit-wise ops, shift-by-one

extended operators: addition, multiplication by constants, single-bit-slices etc.

encode in symbolic model checking logarithmically in bit-width

see our CSR’12, SMT’13 papers and our 2015 journal article in TOCS.

came accross otherwise unsolvable benchmarks from industry!

SAT Solving for Model Checking and Beyond @ HVC’15



Commutativity of Bit-Vector Addition in SMV 19/35

MODULE main

VAR

c : boolean; -- carry ’bvadd x y’

d : boolean; -- carry ’bvadd y x’

x : boolean; -- x0, x1, ...

y : boolean; -- y0, y1, ...

ASSIGN

init (c) := FALSE;

init (d) := FALSE;

ASSIGN

next (c) := c & x | c & y | x & y;

next (d) := d & y | d & x | y & x;

DEFINE

o := c != (x != y);

p := d != (y != x);

SPEC

AG (o = p)

SAT Solving for Model Checking and Beyond @ HVC’15



Commutativity of Bit-Vector Addition in AIGER 20/35
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Hardware Model Checking Competition (HWMCC) 21/35

2007

1st

HWMCC

CAV’07

Berlin

2008

Princeton

2nd

HWMCC

CAV’08

HWMCC Lunch

FMCAD’08

Portland

2011

Austin

FMCAD’11

HWMCC

4th

2010

3rd

HWMCC

CAV’10

FLOC’10

Edinburgh

2013

6th

Portland

FMCAD’13

HWMCC

USA

2006

AIGER format

Ascona

AVM’06

CAV’06

Founding Lunch

FLOC’06

Seattle

2012

FMCAD’12

HWMCC

5th

Cambridge

UK

2014

7th

HWMCC

CAV’14

Vienna

Austria

HWMCC

2015

FLOC’14 FMCAD’15

USA

Austin

8th

founding lunch at CAV’06, first competition at CAV’07

HWMCC lunch at FMCAD’08⇒ need multiple properties !!!

affilliated with either CAV (7,8,10,14) or FMCAD (11,12,13,15)

HWMCC’11: old SINGLE, new LIVEness and new MULTI property track

HWMCC’12 as HWMCC’11, new DEEP bounds track sponsored by Oski

in essence no change in HWMCC’12 - HWMCC’15

HWMCC’15: DEEP, SINGLE, and LIVE, MULTI, 1h time limit, before 15min



20 Model Checkers in HWMCC’15 22/35

abcsimple, abcsimplive, abcsuprove from Berkeley Brayton,Sterin,Mishchenko,. . .

aigbmc, blimc from JKU Linz Biere

avy from Technion+SEI+Princeton Vizel,Gurfinkel,Malik

iimc from Boulder Somenzi,Bradley,Hassan

iprover(hc),iproverdeep(hc) from Manchester Tsarkov,Korovin

nuxmv,nuxmvbmc from Trento Griggio,Roveri,. . .

pdtravdeep, pdtravthrd from Torino Cabodi,Quer,. . .

ricecnu from Rice Li,Vardi

shiftbmc from Dresden Manthey

tip2014, tip2014bmc from Chalmers Sörensson,Claessen

v3s from Taipei Yang,Wu,Huang

SAT Solving for Model Checking and Beyond @ HVC’15
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abcsimple
abcsuprove
nuxmv
pdtravthrd
avy
iimc
tip2014
v3s
blimc
aigbmc
shiftbmc
tip2014bmc
nuxmvbmc
iproverhc
pdtravdeep
ricecnu
iproverdeephc
iproverdeep
iprover



              HWMCC’15 Table SINGLE SAT+UNSAT

rank          cnt  ok sat uns fld  to  mo s11 s6 unk  real   time max best uniq

1   abcsimple 548 363 122 241 185 154  31   0  0   0 45438 161407 6785  28  1
   abcsuprove 548 358 120 238 190 156  34   0  0   0 41596 115597 6905  23  1
2       nuxmv 548 357 127 230 191 165  26   0  0   0 47600 186902 6900  30  0
   pdtravthrd 548 353 115 238 195  62 124   3  0   6 52819 158951 6824  18  3
3         avy 548 345 115 230 203 171  30   0  0   2 49724 166878 5924  19  1
         iimc 548 335 105 230 213 163  50   0  0   0 57840 202386 6969  76  7
      tip2014 548 315  98 217 233 233   0   0  0   0 46817  46596 1062 144  0
          v3s 548 296  62 234 252 141   7 102  2   0 54273 152125 6037  28  4
        blimc 548 141 128  13 407 287  20   0  0 100 31687  31584 2241  61  1
       aigbmc 548 126 126   0 422 310  43   0  0  69 34210  34104 3644  47  1
     shiftbmc 548 120 120   0 428 247  12   0  0 169 37819  37697 1810  28  0
   tip2014bmc 548 117 117   0 431 225  50   0  0 156 11054  10911 5496  64  1
     nuxmvbmc 548 115 115   0 433 256  28   0  0 149  8885   8796 2504  45  0
    iproverhc 548 112  64  48 436 156   0   0  0 280 32269  17292 6730   3  0
   pdtravdeep 548 105  46  59 443 345  86   4  0   8 14725  14568 4202  11  0
      ricecnu 548 100  30  70 440 342  88   0 10   0 49153  49054 2204   0  0
iproverdeephc 548  93  46  47 455 177   0   0  0 278 18116  17482 6728   2  0
  iproverdeep 548  86  46  40 462 149   0   0  0 313 14899  14818 6322   1  0
      iprover 548  83  43  40 465  59   0   0  0 406  8768   8698 6176   3  0

hors concours (not ranked):

   aigbmc blimc: organizer model checkers
     pdtravthrd: issue catching ’FATAL’ for ’intel045’ (not counted)
        ricecnu: reports 8 instances SAT which are UNSAT (not counted)
     iprover*hc: last minute (script) fixes after deadline

each team / submitter only ranked once (one medal maximum)
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Personal SAT Solver History 27/35

19801960 2000 20101970 2020

DPL
SAT Chapter
Donald Knuth

DP

CDCL

LBD

Phase

Tseitin
Encoding

BMC

SAT
NP complete

SAT
everywhere

QBF

Solvers

Massively
Parallel

Arithmetic

working

WalkSAT

GSAT

Handbook of SAT

ProbSAT

Saving

Avatar

Inprocessing

Cube & Conquer

VSIDS

SMT

Bounded
Variable

Elimination

competition

Look Ahead

SAT for
Planing

1st SAT

1990

Portfolio

*
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Competitions, Benchmarks, Science 34/35

competitions are used to

compare and evaluate implementations and algorithms

generate benchmarks used in papers

SAT competition is one of the largest competitions

many solvers, highly competitive

portfolio solving, over-tuning issues

benchmark selection scheme broken due to competing goals:

assess the state-of-the-art

high-light new ideas

give a fair chance to everybody

research in SAT solving, verification, etc. in essence empirical science
benchmark selection critical

how to select benchmarks?

for the competition?

in your papers?

SAT Solving for Model Checking and Beyond @ HVC’15



Conclusion 35/35

what I did not talk about ... (yet)

parallel SAT

QBF / quantifiers in general

huge improvements in local research in recent years

how to apply local search to bit-vectors and SMT

testing / debugging

assertion synthesis

acknowledgements:

Ed Clarke, all co-authors, collaborators, students and Post-Docs
and if would list more names I would struggle with order and probably forget somebody

if you have model checking, SMT, or SAT problems you want share let me know . . .

looking for Post-Doc’s and PhD students too

SAT Solving for Model Checking and Beyond @ HVC’15


