
Clausal Equivalence Sweeping
Armin Biere1 Katalin Fazekas2 Mathias Fleury1 Nils Froleyks3

1 2 3

October 18, 2024, Prague, Czech Republic

24th International Conference on
Formal Methods in Computer-Aided Design

FMCAD 2024

https://cca.informatik.uni-freiburg.de/biere/talks/Biere-FMCAD24-talk.pdf

supported by Intel

https://cca.informatik.uni-freiburg.de/biere/talks/Biere-FMCAD24-talk.pdf

Hardware Equivalence Checking (EC)

compare original (golden) with variant circuit (optimized) aka. miter [Brand’93]

widespread industrial use since 20+ years

EDA provides EC tools: Siemens (Mentor), Cadence, Synopsys, . . .

combinational EC (focus here) and sequential EC (model checking)

original seminal work used BDD sweeping

Kuehlmann and Krohm “Equivalence checking using cuts and heaps” DAC’97

mostly replaced by SAT sweeping (e.g., Fully Reduced AIGs = FRAIGs)

Kuehlmann, Paruthi, Krohm, Ganai

“Robust boolean reasoning for equivalence checking and functional property verification” TCAD’02

Mishchenko, Chatterjee, Jiang, Brayton

“FRAIGs: A unifying representation for logic synthesis and verification” ERL TR 2005

state-of-the-art uses hybrid solving (clausal + circuit)

Zhang, Jiang, Amarù, Mishchenko, Brayton

“Deep integration of circuit simulator and SAT solver” DAC’21

Zhang, Jiang, Mishchenko, Amarù “Improved large-scale SAT sweeping” IWLS’22

Can we do this directly on CNF?

clausal equivalence sweeping

just encode miter (comparison of both circuits) into CNF via. Tseitin

disadvantage: circuit structure lost (gates, models, topological order)

advantage: easily combined with powerful SAT techniques (inprocessing etc.)

submitted in 2013 CNF miters to the SAT competition

CDCL works really badly on these (restarts essential)

even fail on “isomorphic miters” (copies of identical circuits)

structural hashing (strash) aka. hash-consing alone solves them instantly
but only on the original circuit representation

hyper-binary resolution can “strash” for AIGs in CNF (still does not scale)
Heule, Järvisalo, Biere “Revisiting hyper binary resolution” CPAIOR’13

new recent SAT’24 algorithm finally successfully does “strash” CNF
Biere, Fazekas, Fleury, Froleyks “Clausal Congruence Closure” SAT’24

this FMCAD’24 paper is about how to do the rest, i.e., semantic CNF sweeping

buddy@company.com, Jan 16, 2023, 5:14 PM

to me, colleague@company.com

Hi Armin,

My colleague (in CC) has encountered an unsatisfiable benchmark
formula from the 2014 SAT competition that is solved immediately by
lingeling (including a verified proof) but takes much longer by other
solvers like CaDiCaL, kissat, or even Gimsatul (the formula is
attached to this email if you are interested).

It turns out that lingeling solves the formula during failed-literal
probing. This is interesting because CaDiCaL and kissat perform
failed-literal probing too, but they must be doing it differently.
Even if I explicitly tell CaDiCaL to perform one or more rounds of
preprocessing (with the -P command-line option), it still takes long
to solve.

We do not want you to spend any time investigating this, but we wanted
to hear whether you can think of an obvious explanation for why this
is happening? Is it maybe because lingeling is using a different
heuristic for choosing the literals to probe on? Or because of other
heuristics related to probing? Or is it maybe something completely
different?

Buddy

to buddy@company.com, colleague@company.com, Jan 16, 2023, 5:20 PM

Very cool, thanks. I will have a look! Maybe it is ’simple probing’,
where we had started experiments with Norbert Manthey once but it never
gave a paper. This simulates structural hashing on AIGs on the CNF level
(fast - because other methods do that too but more and slower).

Armin

to buddy@company.com, colleague@company.com, Jan 16, 2023, 5:24 PM

Yep, so it is probably actually a benchmark I submitted in that year ;-)
Those are miters of identical circuits, which can be trivially solved if
you have the AIGs: just read the input. For SAT it is much harder even
though we know there is a simple resolution proof. See our CPAIOR’13
paper (Knuth called this issue a dead body in the cellar). I have not
found a way to make this fast in all cases and worse it can not be
preempted as variable elimination destroys the nice structure for this
simple probing to work. The SAT sweeper in Kissat can do it with Kitten
as sub-solver, but you have to give more time.

With ’--no-prbsimple’ you can check that it is indeed ’simple probing’ to
make Lingeling fast on this one.

Armin

to buddy@company.com, colleague@company.com, Jan 16, 2023, 5:30 PM

BTW, I guess you used this one

/data/cnf/sc2022/main/6s184.cnf.xz

which is a benchmark I regularly use for testing now
(Kissat solves it in 800 seconds or so).

It is good that the organizer’s procedure seems to pick up those trivial
benchmarks ;-)

Armin

buddy@company.com, Jan 16, 2023, 5:30 PM

to me, colleague@company.com

Haha, so I guess lingeling was the only solver solving that formula
efficiently back then. :-D

Thanks a lot for responding so quickly! I just started a run of lingeling
with ’--no-prbsimple’, and after more than two minutes it is still
running. Nice!

Thanks a lot,
Buddy

$ date
Tue Oct 15 17:51:51 CEST 2024

$ lscpu | grep Model.name
Model name: AMD Ryzen 9 7950X 16-Core Processor

$ grep p cnf 6s184.cnf
p cnf 33368 97516

$ time -p kissat 6s184.cnf -q # with SAT’24 (congruence), FMCAD’24 (sweep)
s UNSATISFIABLE
real 0.02
user 0.01
sys 0.01

$ time -p kissat 6s184.cnf -q --no-congruence # no SAT’24
s UNSATISFIABLE
real 15.96
user 15.86
sys 0.09

$ time -p kissat 6s184.cnf -q --no-congruence --no-sweep # no FMCAD’24
s UNSATISFIABLE
real 107.04
user 106.59
sys 0.43

Isomorphic 341 Miters from HWMCC’12 Benchmarks

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

341 abc−fraig
341 kissat−default
341 kissat−proof
341 kissat−no−sweep
340 dpr−trim
339 kissat−no−congruence
329 kissat−no−congruence−no−sweep

Optimized 341 Miters from HWMCC’12 Benchmarks

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

34
0 100% = 341 instances50 sec 500 sec

336 kissat−default
335 kissat−proof
335 abc−fraig
334 kissat−no−congruence
331 dpr−trim
330 kissat−no−congruence−no−sweep
329 kissat−no−sweep

State-of-the-Art Circuit Approach on 5 Hard Miters [IWLS’22,DAC’21]

0 1000 2000 3000 4000 5000

1
2

3
4

5

100%

5 instances50 sec 500 sec

5 abc−fraig
5 dpr−trim
5 kissat−proof
5 kissat−default
5 kissat−no−sweep
5 kissat−no−congruence
5 kissat−no−congruence−no−sweep

[IWLS’22] “Improved large-scale SAT sweeping”
He-Teng Zhang, Jie-Hong R. Jiang, Alan Mishchenko, and Luca Amarù.

[DAC’21] “Deep integration of circuit simulator and SAT solver”
Hee-Teng Zhang, Jie-Hong R. Jiang, Luca G. Amarù, Alan Mishchenko, and Robert K. Brayton

How does it work? Pseudo-Pseudo-Code — Pseudo-Code in Paper — Real-Code in Kissat

clausal-equivalence-sweeping (CNF F)
1 working set W initialized to all variables of F

2 while W ̸= /0 call to embedded SAT solver Kitten

3 pick and remove x from W

4 determine bounded CNF environment G of x with G⊆ F and x ∈V (G)

5 if G is unsatisfiable 1 then also F is unsatisfiable and return
6 backbone candidate set B← {l | σ(l) = 1} where σ is a model of G

7 equivalent literal partition P← {B}
8 while B ̸= /0

9 pick and remove l from B

10 if G∧ l̄ unsatisfiable 2 add l as unit to F and G, propagate and continue
11 refine B and P based on model of G∧ l̄

12 while exists L ∈ P with l, k ∈ L and l ̸= k

13 if G ∧ l∧ k̄ is unsatisfiable 3 and G ∧ l̄∧ k is unsatisfiable 4

14 then substitute l by k in F and G and propagate
15 else refine P based on satisfying model
16 add back to W all the variables in reduced or substituted clauses

Slide invited talk at FDL’22

Conclusion

Semantic SAT Sweeping directly on CNF [FMCAD’24]

Complements syntactic Clausal Congruence Closure [SAT’24]

Improves miter checking in state-of-the-art SAT Solver Kissat

Kissat dominated the SAT Competition 2024

Useful for Optimized / Synthesized miters

Helps in other SAT solving tasks too

Future Work

How to maintain global Backbone / Equivalence candidates?

How to get a good initial global Backbone / Equivalence candidate set?

Article on merging SAT’24 and FMCAD’24 work

Port clausal equivalence sweeping to CaDiCaL

How to produce linear proofs (LRAT)?

Isomorphic 324 Miters from HWMCC’20 Benchmarks

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

324 abc−fraig
324 kissat−no−sweep
324 kissat−default
324 kissat−proof
324 dpr−trim
309 kissat−no−congruence
296 kissat−no−congruence−no−sweep

Optimized 324 Miters from HWMCC’20 Benchmarks

0 1000 2000 3000 4000 5000

26
0

27
0

28
0

29
0

30
0

31
0

32
0

100% = 324 instances50 sec 500 sec

320 abc−fraig
309 dpr−trim
309 kissat−default
309 kissat−proof
307 kissat−no−congruence
305 kissat−no−sweep
298 kissat−no−congruence−no−sweep

