
Parallel SAT Solving

To Share or Not To Share
Armin Biere

Johannes Kepler University
Linz, Austria

Theoretical Foundations of Applied SAT Solving

Schloss Dagstuhl
Leibniz Zentrum für Informatik

Wadern, Germany

Thursday, 23 April, 2015



Parallel Computers 1

Multi-Core CPUs
CPU frequency scaling stalled but Moore’s Law still holds
http://ce.cs.jku.at/events/informationsveranstaltung-computational-engineering-slides/ParallelComputing.pdf

number of cores per processor is increasing (8-96)

GPU (graphic processing units)
thousands of (dumb) cores

focus on data processing (games)

10x-100x more memory througput than CPU (like 5GB/sec vs 200GB/sec)

you need to program 1st level cache explicitly (CUDA)

Cluster
also known under the notion of grids

cheap, available

Cloud
even more cores

scalability in terms of allocating less/more resources

slight focus on massive data processing (like map reduce algorithms)
To Share or Not To Share @ Dagstuhl’15

http://ce.cs.jku.at/events/informationsveranstaltung-computational-engineering-slides/ParallelComputing.pdf


Challenge 2

we want to solve even harder problem than those we can solve today

we do have (easy) access to parallel computers

how to parallelize SAT?

how to get speed-up (sequential divided by parallel wall clock time)

current model in HPC (high performance computing): hero programmer

fight between correctness and efficiency (lock vs no-lock)

different strategies for different parallel computers

To Share or Not To Share @ Dagstuhl’15



Why am I standing here? 3

developped parallel solvers Plingeling, Treengeling

Plingeling

portfolio solver (makes use of the 321 options of Lingeling)

technically it only uses call backs from the core Lingeling library

sharing of units + equivalences + short clauses

Treengeling

(concurrent) cube & conquer solver

portfolio component sharing of units and refuted cubes

Cube & Conquer [HeuleKullmannWieringaBiere’11]

use look-ahead SAT solver to produce cubes

solve those cubes in parallel with CDCL

won several first places in recent competitions

next slide: parallel application track 2014 with time-out 1000 sec (4 cores)

http://satcompetition.org/edacc/sc14

To Share or Not To Share @ Dagstuhl’15

http://satcompetition.org/edacc/sc14


●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

plingeling versus lingeling

plingeling

lin
ge

lin
g

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●●●●●●●●●●●●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination



Levels of Parallelization (in SAT Solving) 5

Service Level [Cloud, Cluster, Multi-Core]
cloud/cluster provider offers compute resources specialized to SAT/SMT/MC. . .?

Application Level [Cluster, Multi-Core]
solve and schedule multiple similar or related problems in parallel

in HW model checking quite common (one RTL model + dozens of properties)

Portfolio Level [Multi-Core maybe Cluster]
run different solvers (or solver configuration) in parallel

share information (clauses, units, equivalences, . . .)

Engine Level [Multi-Core]
use different algorithms which support each other, e.g., pre/inprocessing

originally sequential, can (easily?) be parallelized, results shared

Search Level [Cloud, Cluster, Multi-Core]
search space splitting, e.g., guiding path, cube & conquer, sharing is hard

Implementation Level [Multi-Core, GPUs]
parallel BCP [. . .], use parallel thread for clause minimization [Wieringa. . .]

parallelize CDCL analyze and BCP [unpublished but also does not really work]
To Share or Not To Share @ Dagstuhl’15



Parallel SAT Solving 6

dominating approach: portfolio with clause sharing
ManySAT, Plingeling, Penelope, . . .

successful in the application track of the competition

portfolio already gives substantial speed-up

clause sharing of “good” clauses gives another boost

search space splitting
originally used on clusters / grids

guiding path principle [ZhangBonacinaHsiang’96]

revisited and extended recently [HyvärinenJunttilaNiemelä’10]

can be combined with look-ahead
Cube & Conquer approach [HeuleKullmannWieringaBiere’11]

works well on multi-core as well

Treengeling won parallel combinatorial track in SAT Competition 2013/14

how to merge these two approaches?

scalability for many cores and larger clusters / grids / cloud

To Share or Not To Share @ Dagstuhl’15



Data Flow Algorithms for SAT 7

most paradigms for SAT solving are control-dominated:

such as variants of CDCL, WalkSAT, or Look-Ahead based algorithms

hard to port to highly parallel computing architectures like:

bit-parallel operations on streaming units (SSE, AVX ops with 128 bit - 256 bit)

multi-core systems with say 96 or even more cores

clusters / grid / clouds with 128 - 100000 cores

GPUs with more than 2000 cores

control flow dominated algorithms have a hard to time to achieve memory locality

conjecture is that data-flow orientation allows memory locality

challenge is to come up with SAT algorithms organized around data-flow

find other ways to change algorithms / machines to become more “local”

our experiences with bit-parallel SAT and GPU’s are rather negative

only focused on preprocessing sofar

positive effect for few crafted instances, usually way slower
see Master thesis by Robert Aistleitner

To Share or Not To Share @ Dagstuhl’15



Conclusion 8

parallelize SAT for solving harder problems

parallelize SAT to econmically make use of available HW

we are just at the beginning of making parallel SAT work

talk by Asish at Banff: proof span = computational span = parallelizability

I think we need totally new algorithms (which is quite exiting)

just got 4 years of funding for parallel SAT solving (Post-Doc seeked)

see also Dissertation Norbert Manthey, particularly, pages 225ff

To Share or Not To Share @ Dagstuhl’15


